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SUMMARY

A principal goal of neural engineering is to control the activation of neural circuits

across space and time. The ability to control neural circuits with surrogate inputs

is needed for the development of clinical neural prostheses and the experimental in-

terrogation of connectivity between brain regions. Electrical stimulation provides a

clinically viable method for activating neural tissue and the emergence of optogenetic

stimulation has redefined the limitations on stimulating neural tissue experimentally.

However, it remains poorly understood how these tools activate complex neural cir-

cuits.

The goal of this proposed project was to gain a greater understanding of how

to control the activity of neural circuits in-vivo using a combination of experimental

and computational approaches. Voltage sensitive dye imaging was used to observe the

spatiotemporal activity within the rodent somatosensory cortex in response to sys-

tematically varied patterns of sensory, electrical, and optogenetic stimulation. First,

the cortical response to simple patterns of sensory and artificial stimuli was charac-

terized and modeled, revealing distinct neural response properties due to the differing

synchrony with which the neural circuit was engaged. Then, we specifically designed

artificial stimuli to improve the functional relevance of the resulting downstream neu-

ral responses. Finally, through direct optogenetic modulation of thalamic state, we

demonstrate control of the nonlinear propagation of neural activity within the thala-

mocortical circuit.

The combined experimental and computational approach described in this thesis

provides a comprehensive description of the nonlinear dynamics of the thalamocortical

xv
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circuit to surrogate stimuli. Together, the characterization, modeling, and overall

control of downstream neural activity stands to inform the development of central

nervous system sensory prostheses, and more generally provides the initial tools and

framework for the control of neural activity in-vivo.
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CHAPTER I

INTRODUCTION

1.1 Writing the neural code

Neurons communicate with each other through an electrical language of sorts, often

referred to as the neural code, comprised of patterns of action potentials across diverse

populations of cells. Through the neural code, populations of neurons process and

transmit information to downstream structures, ultimately resulting in perception

[86], movement [63], memory [135], or decision making [158]. Even the activity of

a single cell can contain significant information about the surrounding environment

[86] or an ensuing movement [63], but more likely it is the activity across entire

neural populations that encodes information reliably [24, 177, 62, 5]. Our ability to

extract such information from the activity of neural populations is often described as

“reading” the neural code [177, 12].

If patterns of neural activity underlie function and behavior, it should not be sur-

prising that the majority of disorders of the central nervous system are the product of

aberrant patterns of activity within and across cells, resulting in undesirable or dele-

terious effects on neural function [80, 35]. However, if we, through our understanding

of the neural code, knew the difference between physiological and pathological neural

activity, we might be able to design therapies to “write in” the normal pattern of

activity. To “write” the neural code, we must already know how to “read” the neural

code to a degree, and, in addition, we need tools to augment ongoing neural activity

in the brain, such as drugs, electrical stimulation, or more recently optogenetic stim-

ulation. The overarching goal of this thesis was to develop methods to “write” the

neural code in the central nervous system, or more specifically to control patterns of

1
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activity in the brain.

Currently, the treatment of neurological disorders primarily consists of the use of

pharmaceutical agents to modulate neural activity. While the region of pathological

activity may be small, pharmaceuticals non-specifically bathe the brain, producing

diffuse modulation of neural activity in pathological and normal functioning circuits,

which can lead to significant side effects. Other non-invasive neuromodulatory tech-

niques, such as transcranial magnetic stimulation or even physical rehabilitation,

operate on similarly slow timescales with low spatial specificity.

In stark contrast is the use of invasive macroelectrodes inserted into the brain to

deliver electrical stimuli, providing the ability to modulate local neural activity on

the timescale of milliseconds. Electrical neuromodulation has principally been used

in the deep structures of the brain to treat the symptoms of Parkinson’s disease,

depression, and tremor, leading to the term “Deep Brain Stimulation”. However, the

most successful neurological intervention using electrical stimulation to date is the

cochlear implant.

1.2 Cochlear implant as a model for sensory prostheses

The cochlear implant is a sensory prosthesis that uses patterns of electrical impulses

to restore functional audition to the deaf [202]. The device truly “writes” the neural

code as sound, picked up by a microphone worn by the individual, is mapped into a

pattern of electrical stimuli across a number of electrodes interfacing with the auditory

nerve in the cochlea. The cochlear implant is specifically designed to compensate for

loss of function in the auditory hair cells within the cochlea, whereas more generally

the goal of a sensory prosthesis is to restore sensory function that has been lost due

to trauma or disease.

A block diagram of a generic sensory prosthesis is shown in figure 1.1. Under

2
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normal sensory function, receptors in the peripheral nervous system transduce envi-

ronmental cues into neuronal signals, which then propagate throughout the sensory

pathway and eventually result in a percept. Damage at any point along the sensory

pathway obstructs the normal propagation of neural activity, requiring the introduc-

tion of surrogate sensory information through artificial stimulation downstream of the

lost function. Surrogate sensory information is produced by sampling the environ-

ment with sensors, extracting salient features through online processing, and encoding

the sensory information into spatiotemporal patterns of artificial stimulation in the

peripheral or central nervous system.

The success of the cochlear implant has been crucially dependent on the advance-

ment in the “encoding” stage of the prosthesis, where the sounds are mapped into

patterned stimulation across the electrode array within the cochlea. Early iterations

provided proof of concept in human patients using only a single channel and very

simple encoding schemes. However, after decades of animal [125, 126] and human

experiments [13] assessing the mapping of auditory nerve stimulation to the down-

stream neural response and resulting percept, more efficient and effective encoding

schemes have been developed [201].

More recently, a retinal prosthesis is under development to restore vision to those

suffering from blindness caused by retinitis pigmentosa [87]. But, implementation

of a sensory prosthesis using electrodes implanted in the central nervous system has

not yet been achieved, likely due to the increased difficulty of interfacing with neural

circuits in the brain, but also because of the heightened, and largely uncharacterized,

complexity of the mapping from artificial stimuli to neural response. Whether the

aim is to reproduce natural neural activity or merely to deliver discriminable inputs

to the brain, the advancement of sensory prostheses requires a greater understanding

of the mapping from electrical stimuli to neural response within complex circuits and

the resulting propagation along neural pathways.
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Figure 1.1: Block diagram of a central nervous system sensory prosthesis. Under
normal conditions, receptors transduce sensory signals into neural activity that prop-
agates along the sensory pathway. A sensory prosthesis supplies surrogate sensory
information by encoding salient sensory features into patterned stimulation of the
peripheral or central nervous system.

Towards this end, this thesis thoroughly characterizes the propagation of neural

activity generated by artificial stimulation in the central nervous system. Subsequent

stimulus design is then used to augment the propagation of neural activity. Finally,

control of the propagation of neural activity is demonstrated through modulation of

the underlying brain state.

1.3 Electrical and optogenetic stimuli as surrogate sensory
stimuli

Artificially activating neural cells has a long history, pre-dating even the recording of

electrical activity from neurons. As early as the late 1800s, electrical stimulation was

used to activate neurons in the central nervous system [58, 167]. In fact, the methods

used today are largely unchanged since stimulation through a microelectrode, termed

microstimulation, became common in the 1960s. Early studies with microstimulation

began to elucidate the minimal currents necessary to stimulate single axons or cell

bodies [179, 74], quantified through chronaxie and rheobase measurements, and how
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this relationship changed with distance from the electrode [162]. This research con-

tinues today, seeking to answer the questions of which neural elements are stimulated

in the micro-environment around the electrode and how specific can this stimulation

be [140, 141, 123, 83].

Concurrently, microstimulation has been used an input to behavioral studies at

the macroscopic scale, with the initial goal to investigate the arrangement of motor

and sensory maps on the cortical surface [150], but more recently to augment or drive

perception and motor output in behavioral tasks [166, 165, 155, 143]. Most recently,

simple patterns of microstimulation were used to provide tactile feedback for a mon-

key performing an active exploration motor task through a brain machine interface

device [142]. Impressive behavioral tasks such as this demonstrate the potential for

electrical microstimulation to deliver surrogate sensory signals for sensory prosthesis

applications [70, 64]. However, it remains to be seen how the stimulation paradigms

using only a few simple patterns can generalize to produce natural [82], or at least

functional sensations, especially considering that behavioral tasks using animals can-

not readily provide the requisite level of detail in the perceptual report and studies

within humans are relatively rare [71, 82]. For this reason, animal studies must

focus on directly measuring the downstream neural activation from electrical micros-

timulation to quantify and enhance the perceptual degrees of freedom of patterned

stimulation [130].

Exactly how electrical stimulation activates a population of neurons within a com-

plex neural circuit, which ultimately gives rise to behavioral percepts, is far less well

understood than for single cell or behavioral readouts. Recent work has pushed

towards recording population responses downstream of the delivery of patterned mi-

crostimulation in vivo [33, 29, 38, 83, 112, 22, 200]. Through this approach, it will

ultimately be possible to generate a model of the downstream neural response to elec-

trical stimulation, allowing the design of stimuli to produce optimal neural activations
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that mimic the naturalistic neural responses or maximize the degrees of freedom of a

prosthesis [110, 44].

Much like electrical microstimulation, in the short existence of the optogenetics

technique, the majority of the focus has been on tool development, using intracellular

recordings as the readout [16, 213, 120], or impressive behavioral experiments designed

to attack long standing hypotheses within the field of neuroscience [99, 212, 105].

Meanwhile, the network level response properties under optogenetic stimulation are

not known. Taken together, electrical and optical stimulation comprise a class of arti-

ficial stimulation techniques that can activate the brain with much higher spatial and

temporal resolution than pharmacological agents or other non-invasive techniques like

transcranial magnetic stimulation, and ultimately be used to investigate information

processing across populations of neurons within large-scale neural circuits and deliver

patterns of activation for sensory prosthesis applications.

1.4 Natural and artificial stimuli activate neural circuits
in distinct ways

Much of the research on electrical and optical stimuli has been based in the early

sensory pathways. Across all major sensory systems, the anatomy of the early stages

in the pathway is well known and adheres to a strict toplogical map [204, 51, 86], such

that propagation can be studied across multiple stages [92, 196]. Further, the response

properties of individual cells to various types of sensory stimuli have been rigorously

mapped, and sensory driven behavioral experiments have become increasingly com-

mon. Altogether, sensory systems provide an ideal testbed for artificial stimuli by

allowing the comparison of the ways in which sensory and artificial stimuli activate

neural circuits, and how that activation propagates to downstream structures.

From the wealth of behavioral experiments utilizing interleaved sensory and arti-

ficial stimuli, and the success of sensory prostheses like the cochlear implant, sensory

and articial stimuli would seem to activate neural circuits in a similar manner. Indeed,
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behavioral work in primates has shown that artificial stimuli can bias the perception

of sensory stimuli [166], or, as Romo et al. showed, functionally replace sensory stim-

uli in certain tasks [165]. However, neither of these studies, or the myriad others,

can comment on how the artificial stimuli truly feel or how they activate the neural

circuit as compared to sensory stimuli.

Human studies with artificial stimuli, however, do allow for the patient to report

the nature and quality of the percept. With the exception of the cochlear implant,

the majority of human studies have indicated a signficant difference between the

percept generated by artificial stimulation and a normal sensory stimulus. The term

paresthesia is often used to describe the sensation resulting from an artificial stimulus

in the somatosensory pathway. Paresthesias have been reported as being discordant

(i.e. not topologically matched to the receptive field of the stimulated neurons)[71,

46] or unnatural altogether [145, 148, 82, 81]. This suggests that artificial stimuli

either: 1) activate distinct neural elements from sensory stimuli, or 2) propagate to

downstream structures differently than sensory stimuli. Electrical stimuli are known

to activate axons preferentially over cell bodies [83], which may contribute to the

discordant and unnatural sensations, but the differences, if any, in the propagation of

neural activity generated by sensory and artificial stimuli remain largely unknown.

Two recent studies highlight the fact that neural signals generated by sensory and

artificial stimuli propagate differently through neural circuits. In an anesthetized pri-

mate preparation, Logothetis et al [112] used single unit recordings in visual cortex,

and fMRI throughout the visual pathway, to measure the propagation of neural activ-

ity generated by visual stimuli delivered to the eye and electrical stimuli delivered to

the lateral geniculate nucleus of the thalamus. Using fMRI, visual stimuli were found

to propagate through all stages in the visual pathway, from the thalamus to higher

association areas in cortex, whereas electrical stimuli (200µA, 200Hz) induced posi-

tive levels of activation in primary visual cortex, but not in areas further downstream.
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While both visual and electrical stimuli activated the thalamus, the propagation of

activity downstream was profoundly different. One explanation provided for these

results was the differential recruitment of inhibitory circuitry within the network,

which may have prevented propagation for the electrical stimuli.

Another study, by Masse and Cook [119], tested the behavioral consequences of

neural circuit dynamics elicited by subthreshold visual and electrical stimuli (deliv-

ered to the cortex in this case). While each was tuned to a subthreshold amplitude,

the relative timing of the stimuli to a suprathreshold test stimulus augmented the

probability that the animal would detect the stimulus, with shorter timescales pro-

ducing a greater decrease in detectability. The performance of the animal recovered

over a shorter time period for the subthreshold visual stimuli than the subthresh-

old electrical stimuli. In this case the behavioral performance of the animal was the

readout, suggesting that there is a functional/behavioral significance to the distinct

properties of neural propagation for sensory and artificial stimuli.

1.5 Direct neural readout of nonlinear propagation in neu-
ral circuits

To better understand how artificial stimulation activates the brain, we must directly

record from multiple nodes within neural circuits simultaneously. Intra-operative

stimulation of humans provides a qualitative report of the nature of the artificially

generated sensation [82, 46, 145, 71]; however, the opportunity for these experiments

is scarce. Animal experiments, while affording higher throughput, do not provide a

description of the nature of the sensations [130]. Thus, the direct recording of the

downstream neural response is needed to inform the development of sensory prosthe-

ses. The goal of this thesis was to use a direct readout of neural activity to assess

the functional differences in signal propagation for sensory and artificial stimuli, and

use this information to develop methods to control spatiotemporal patterns of neural

activity in the brain.
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A number of recent studies have focused on directly measuring the downstream

neural response to electrical stimulation [33, 112, 93, 29, 83, 38, 22, 200]. The measure-

ment location has principally been the primary sensory cortex, regardless of whether

the stimulation was in the periphery [115], spinal cord [200], thalamus [33, 93], or

cortex [29, 27, 83, 22]. The decision to record in cortex is two-fold in that 1) it’s

location on the surface of the brain allows for easier neural interfacing, and 2) the

cortical response is believed to be the first stage of emergent sensory perception [133].

Typically the experiments involved simple patterns of stimuli, such as in Butovas et

al., where a multi-electrode array was used to record the cortical spiking response

to pairs of intracortical microstimulation [29]. But, the direct recording of spiking

activity in cortex can be plagued by the artifact generated by electrical stimulation,

and the spatial resolution of multi-electrode arrays is typically sparse.

The incorporation of various imaging techniques has expanded the spatial resolu-

tion of neural circuit recordings, allowing many nodes to be captured at once, while

also reducing the affect of the stimulation artifact. For instance, optical imaging

methods, such as voltage sensitive dye imaging [38], calcium dye imaging [11], and

two photon techniques [83], are invariant to the electrical artifacts generated by mi-

crostimulation and provide high spatial resolution over large regions of the cortical

surface. The gains in spatial extent of the neural recording are at the expense of the

temporal resolution of the signals and the indirect relationship between the recorded

signals and spiking activity [72, 104]. Functional magnetic resonance imaging (fMRI)

extends this by sacrificing temporal resolution to gain recordings across the entire

brain, allowing analysis across multiple stages of a neural pathway [112]. However,

the fMRI BOLD signal is even more indirectly related to neural activity, by virtue of

the metabolic demands of spiking [113].

These tools are critical to the understanding of surrogate sensory inputs. By

directly observing the neural response to patterns of sensory and artificial stimuli, we
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can begin to understand and model the mapping from artificial stimulation to neural

activation to inform the development of sensory prostheses.

1.6 Experimental framework for the design of functionally
relevant surrogate sensory inputs

The mapping from artificial stimulation to neural activation will likely depend on the

exact neural circuit under investigation. However, many neural circuits within the

brain share a common canonical structure, such that there may be emergent proper-

ties that can be generalized across brain structures. The thalamocortical circuit is one

such canonical circuit [171]. The architecture of the thalamocortical circuit is largely

conserved across sensory modalities and mammalian species, and contains both re-

current excitation and feedforward inhibition, as depicted in figure 1.2(b). Recurrent

inhibition occurs at the level of the thalamus, with the neighboring reticular thala-

mus providing direct inhibitory feedback. The interaction between the thalamus and

reticular thalamus is strongly modulated by state, as the two structures dynamically

shift between tonic and burst firing modes [170]. The pyramidal neurons of the tha-

lamus then project to layer 4 of cortex, synapsing on both excitatory and inhibitory

neurons within the population. The feedforward drive on the inhibitory population

quickly shunts excitability in cortex, leaving only a short window of opportunity for

thalamic drive to activate the excitatory population [59]. The resulting dynamics

of the thalamocortical circuit are well known in response to sensory stimuli, both

under anesthesia [173, 174, 185, 23, 176, 107, 31, 106, 57] and in the awake animal

[161, 55, 122].

In this thesis, we delivered artificial stimuli to the thalamus, allowing a direct

neural readout of the downstream cortical response. And, while there is some evidence

that the thalamus may be a legitimate target for sensory prosthesis implementation

[155, 154, 82, 81], the only assertion here is that it is an ideal canonical circuit through

which we can study the relative behaviors of natural and artificial stimulation.
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Figure 1.2: Architecture of the rodent vibrissa somatosensory system. (a) There
is a one-to-one topographic mapping from the whiskers on the face and the corti-
cal columns in cortex, as shown in the tangential section stained with cytochrome
oxidase. (b) The one-to-one mapping occurs in the thalamus as well and maintains
the topography in the projection to layer 4 of primary somatosensory cortex. Each
cortical column contains a mixture of excitatory and inhibitory neurons, producing
canonical circuit phenomena like recurrent excitation and feedforward inhibition.

Specifically, the lemniscal pathway within the rodent vibrissa somatosensory sys-

tem was utilized for all experiments in this body of work [51]. The detailed anatomical

literature on the rodent vibrissa system makes it an ideal system for studying the prop-

agation of neural activity. The rodent vibrissa system is characterized by its discrete

nature, such that the mechanical deformation of a given whisker on the face activates,

with high specificity, a somatopically defined collection of cells [51, 206, 188]. The

discretization is illustrated by the cartoon in figure 1.2(a), where the topographic

mapping of the whiskers on the face exactly matches the arrangement of the cortical

columns in cortex, as revealed by cytochrome oxidase staining.

In this way, the location of the artificial stimulation can be determined and

matched to the deflection of the corresponding whisker on the face, as in figure 1.3.

The elctrode location was determined electrophysiologically by measuring the spiking

activity of a single unit (example in figure 1.3(a)) in response to the deflection of

neighboring whiskers on the face. An example in figure 1.3(b) presents the spiking
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response to the deflection of seven neighboring whiskers. The cell responded with the

greatest number of spikes (summarized in figure 1.3(c)), and shortest latency, to the

deflection of whisker D2. For this example and all others throughout the thesis, the

location of the electrode was determined in this manner. In addition to determining

the primary whisker, the electrophysiological data was used to verify the location of

the electrode in the ventro-posterior medial (VPM) nucleus of the thalamus, compris-

ing the lemniscal portion of the whisker somatosensory thalamus, as opposed to the

posterior medial (POM) nucleus that forms the paralemniscal portion of the pathway

[51]. VPM neurons have been shown previously to respond with much shorter la-

tency to whisker deflection (3-5ms) than POM neurons, enabling electrophysiological

classification [50, 4].

While recent advances in electrode technology, based on silicon probes or tetrode

arrays, have enabled high density electrophysiological recordings of neural activation

[32], these techniques are not ideally suited for studying the response to electrical

microstimulation due to the large stimulus artifact that occurs upon stimulation and

sparse spatial sampling. Methods exist for the minimization of information loss dur-

ing the stimulus artifact [79, 192, 137], but we instead used voltage sensitive dye

imaging (VSDI) to record the cortical response to patterns of natural and artificial

stimulation of the thalamus, which, as an optical signal, does not suffer from elec-

trical microstimulation artifacts. VSDI fluorescence provides a spatiotemporal signal

that is linearly proportional to the membrane potential of neurons [72], and has been

used extensively to measure the propagation of neural activity in functional circuits

[152, 55]. Due to the light scattering of the tissue, voltage sensitive dye imaging

principally measures the activity in the superficial layers of cortex [73]. Further, the

dynamics and imaging of the signal are too slow to resolve individual action potentials,

restricting the interpretation of the signal to sub-threshold activation [72]. However,

the onset of sub-threshold activation in layer 2/3 is likely highly correlated with the
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Figure 1.3: Functional validation of thalamic electrode placement. A) A typical
example of single-unit activity recorded in VPm (left) and spike waveforms (right).
B) The peri-stimulus time histograms (PSTHs) of a VPm cell in response to punctate
deflection of whisker C2, D1, D2, D3, E1, E2, and E3 (binsize = 2ms). C) Selection of
principal whisker (PW) was confirmed by the fact that PW evoked stronger spiking
activity than adjacent whiskers (AW) (p=0.01, Mann-Whitney U-test).
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Figure 1.4: Voltage sensitive dye imaging of cortical network activity. (a) Diagram
of the experimental setup. The electrode and/or optical fiber was positioned in a
barreloid in the thalamus, a collection of cells that respond most vigorously to a
common whisker. Imaging in cortex captured the response of each cortical column.
(b) Histological analysis provides an anatomical map of the cortical column structure
(left), which was then fit to the functional imaging data (right). (c) The cortical
response to whisker stimulation begins 10-15 milliseconds after stimulation, in a
focal location before growing in amplitude and spreading spatially. (d) Examples
of the cortical response to whisker, electrical, and optical stimuli delivered within a
single experiment. Scale bars in (b) and (c) are 500 micrometers.

supra-threshold activity in layer 4 of cortex [152]. Given these advantages and lim-

itations, we have developed VSDI techniques in our laboratory to measure circuit

dynamics across functional cortical columns with fast temporal resolution [195].

An example of the VSDI setup is shown in figure 1.4(a). The VSDI data is

presented and analyzed in two different ways throughout the project, both illustrated

in figure 1.4(c). Individual frames provide information about the spatial spread of the

cortical response with sub-columnar resolution (bottom of figure 1.4(c)). Alternately,

to analyze the temporal evolution of the cortical response on single trials (top of figure

1.4(c)), we average spatially within the topographically matched cortical column to
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the position of the electrode and/or optical fiber in the thalamus or the whisker on

the face. Histological analysis was performed through cytochrome oxidase staining

to identify the cortical columnar map, which was then registered functionally to

the VSDI frames, as in figure 1.4(b). Examples of the cortical response to whisker,

electrical, and optogenetic inputs from a single experiment are shown in figure 1.4(d)

for comparison. Taken together with the goals of this project, VSDI provides a test-

bed that allows us to identify and model the nonlinear dynamics of the spatiotemporal

response of a neural circuit in vivo and informs the design of patterned stimuli for

the control of neural circuit activation.

1.7 Organization of the thesis

In the following chapters, this experimental framework is used to characterize the

cortical response to sensory, electrical, and optogenetic inputs to the thalamocortical

circuit. Chaper 2 explores the nonlinear response properties for single stimuli with

varying intensity and concludes with computational model to support the develop-

ment of a hypothesis about how sensory and artificial stimuli differentially engage

neural circuits. Chapter 3 extends the analysis to patterns of stimulation in time,

and in Chapter 4 a model is developed to describe the nonlinear dynamics of the

cortical response to patterns of electrical stimulation, which further supports the hy-

pothesis outlined in Chapter 2. In Chapter 5, stimulus design is explored to overcome

the different neural responses to natural and artificial stimuli detailed in Chapter 2.

Specifically, the electrical stimulation waveform is varied in an effort to improve spa-

tial specificity in the cortical response, and optimal signal set design is utilized to

maximize discriminability amongst cortical responses. Chapter 6 generalizes the pre-

vious results by quantifying the effect of the state of the thalamus on the nonlinear

properties of the cortical response to thalamic microstimulation by using optogenetics

to control the depolarization of the thalamic population. Finally, Chapter 7 details
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the combined impact of these experimental and computational results on the use of

artificial stimuli as surrogate sensory signals, and more generally on the field of neu-

ral engineering as a whole, before concluding with a generalized framework for the

control of neural activity.
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CHAPTER II

CHARACTERIZATION OF THE NONLINEAR

SENSITIVITY OF THE CORTICAL RESPONSE TO

SURROGATE THALAMIC DRIVE

Portions of this work were presented in poster form at the following conference:

Millard, DC, Gollnick, CA, Hendry, WJ, Rozell, CJ, & Stanley, GB. The role of

magnitude and synchrony of population activity in nonlinear circuit processing in

the thalamocortical circuit of the rodent vibrissa system. Society for Neuroscience

Annual Meeting, San Diego, CA, November 2013.

2.1 Introduction

Artificial stimulation techniques afford the ability to replace lost function or interro-

gate neural circuit operation by acting as surrogate inputs to the brain. Electrical

stimulation remains the only clinically viable means of artificial stimulation on fast

timescales, while optogenetic stimulation has revolutionized the ability to dissect neu-

ral circuits experimentally through genetic cell type specificity. However, behavioral

[119] and electrophysiological [112] evidence suggests that neural activity generated

by natural and artificial stimuli differentially propagate to downstream structures.

Yet, the extent to which natural and artificial stimuli differentially activate neural

circuits, the mechanism, and how this affects the functional relevance of the down-

stream signals remains unknown.

The thalamocortical circuit has proven an ideal model system for studying the

propagation of neural activity in sensory pathways experimentally. The anatomy of

the circuit is well-known across all sensory modalities [171] and is characterized by
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a set of highly convergent/divergent connections from the thalamus to cortex. The

thalamocortical synapses are known to be weak [26] and noisy, yet robustly transmit

information to the downstream cortical neurons, indicating a role for synchrony in

activity propagation [2, 24, 177]. Indeed, across sensory modalities, the synchrony

of early stage sensory neurons is modulated by the properties of the stimulus [156,

185, 196]. In contrast, artificial stimulation of neuronal tissue through electrical or

optogenetic means induces an extreme degree of timing precision and synchronization

across neuronal populations [191, 16]. Importantly, synchrony has been shown in

computational models to play a key role in the propagation and transformation of

activity across brain structures [100]. Thus, the degree of synchronization, and the

properties of the ensuing downstream neural response, for sensory and artificial stimuli

will have profound coding consequences on the design of surrogate signals.

In this study, we directly measured the propagation of neural activity generated by

sensory and artificial stimuli, built a computational network model to investigate the

mechanistic differences in circuit engagement, and established a theoretical framework

for the optimal design of artificial stimuli. Specifically, we quantified the amplitude,

variability, and spatial spread of the cortical response to whisker, electrical, and opto-

genetic stimuli using voltage sensitive dye imaging in the vibrissa region of the rodent

primary somatosensory cortex. Then, using a model of the thalamocortical circuit,

we explained the distinct cortical response properties for whisker, electrical, and op-

togenetic inputs through systematic variations of the magnitude and synchrony of the

input population activity. The model attributed the highly nonlinear properties of

electrical and optogenetic stimulation to the high degree of synchronization, while the

fixed, focal spatial activation of whisker and optical stimuli was due to the activation

of cell bodies and not axons. Finally, we explored the functional ramifications of the

distinct neural response statistics associated with natural and artificial stimulation

in the context of generating maximally discriminable neural responses in downstream
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structures.

2.2 Methods

2.2.1 Experimental Preparation

All procedures were approved by the Georgia Institute of Technology Institutional

Animal Care and Use Committee and followed guidelines established by the National

Institutes of Health. The same experimental preparation described in Chapter 1

was used here, with the detailed methods described in Appendix A. Briefly, female

sprague-dawley rats (250-300g) were initially anesthetized with 4% isoflurane before

intraperitoneal injection of Nembutal (50mg/kg weight) for long term anesthesia.

Subsequent doses of Nembutal were used to maintain a surgical level of anesthesia.

Animals were mounted in a stereotactic device and a craniotomy was performed

over the left parietal cortex (coordinates: 1-4mm posterior to bregma, 4-7mm lateral

to midline) to expose the barrel representation of the primary somatosensory cortex

[149]. Another craniotomy was performed to allow access to the ventral postero-

medial (VPm) region of the thalamus (coordinates: 2-4mm posterior to bregma,

1.5-2.5mm lateral to midline, 4.5-5.5mm depth at a 12 degree angle to brain surface).

A subset of the animals underwent an initial survival surgery, during which the vi-

ral vector (AAV2-CaMKIIa-hChR2(H134R)-mCherry, UNC Viral Vector Core, Chapel

Hill, NC) was delivered to the thalamus using stereotactic coordinates. The injection

was delivered at 0.2µL/min for 5min for a total of 1µL. The animals were allowed

to recover for 3-4 weeks, providing time for the ChR2 expression to reach functional

levels.

2.2.2 Voltage Sensitive Dye Imaging

Voltage sensitive dye imaging (VSDI) was used to monitor cortical activation in re-

sponse to thalamic microstimulation. The VSDI data were acquired at five millisecond

interframe intervals beginning 200 milliseconds preceding stimulus presentation.
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Multiple trials of VSDI data were collected for each stimulus. For each trial, the

40 frames (200ms) collected before the presentation of the stimulus were averaged to

calculate the background fluorescence, against which the activation was measured.

For each frame, the background fluorescence was subtracted to produce a differen-

tial signal ∆F . Additionally, each frame was divided by the background image to

normalize for uneven illumination and staining to produce the signal ∆F/F0. For pre-

sentation purposes only, the individual trials were averaged together and then filtered

with a 9x9 pixel spatial averaging filter.

The anatomical mapping, acquired through cytochrome oxidase histology, was

registered with the functional cortical column mapping from VSDI by solving a linear

inverse problem, the details of which have been described previously [195]. Following

the functional image registration, the cortical response was discretized, where each

signal corresponds to a single functional cortical column. In so doing, the VSDI signal

was averaged spatially within the contour of the cortical column.

2.2.3 Whisker Stimulation

Whiskers were trimmed at approximately 12mm from the face, and were inserted into

a glass pipette fixed to the end of a calibrated multi-layered piezoelectric bimorph

bending actuator (range of motion, 1 mm; bandwidth, 200 Hz; Physik Instrumente

(PI), Auburn, MA) positioned 10 mm from the vibrissa pad. Vibrissae were always

deflected in the rostral-caudal plane. Punctate deflections consisted of exponential

rising and falling phases (99% rise time, 5 ms; 99% fall time, 5 ms), with varying

angular deflection velocity (75-1200 deg/s).

2.2.4 Electrical Stimulation

A glass coated tungsten microelectrode (impedance = 1-2 MΩ at 1kHz) was advanced

to the ventral posterio-medial (VPm) region of the thalamus using a precision mi-

crodrive (Knopf Instruments, Tujunga, CA). The principal vibrissa was determined
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by manually deflecting individual whiskers and confirmed using the latency and spike

count of single unit recordings in response to controlled whisker deflection using a

piezo-electric actuator. In the event that single unit recordings could not be achieved,

multi-unit activity was used.

Following electrophysiological determination of the electrode position and its as-

sociated principal vibrissa, the electrode was used to deliver microstimulation to the

surrounding tissue. The stimulus waveforms were designed using a digital stimulus

generator (WPI Inc, Sarasota, Florida) and delivered using a current controlled, op-

tically isolated stimulator (WPI Inc, Sarasota, Florida). Individual electrical stimuli

were charge-balanced, cathodal-first, biphasic waveforms of 200 microsecond dura-

tion per phase. A series of single electrical stimulation pulses with varying amplitude

between 10 and 100 microamperes was used to test the static nonlinearity of the neu-

ral circuit. The current range was chosen to elicit the full range of sub-threshold to

maximal cortical responses.

2.2.5 Optical Stimulation

For optical stimulation, an optrode was used. The optrode consisted of a multimode

optical fiber (105µm core diameter, 125µm coating diameter, 0.22NA, Thorlabs, New-

ton, NJ) and one or two quartz coated platinum-tungsten microelectrodes (80µm

diameter, Thomas Recording, Giessen, Germany). The microelectrodes were pulled

and ground to an impedance of 1-2 MΩ at 1kHz. The optical fiber was also ground

to a fine point, producing a spherical, rather than conical, pattern of light delivery.

A DPSS laser (Laserglow Technologies, Toronto, Canada) was used to deliver blue

(473nm) light to the VPm thalamus and stimulate the ChR2 expressing cells. The

stimuli were square pulses of 5ms duration and varying light intensity. The maximum

light delivered during the experiments was approximately 150 mW/mm2, but typically

only 50 mW/mm2 was needed to drive neural activity in ChR2 expressing neurons.
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According to Aravanis et al, 2007, the light intensity at 200 micrometers from the

optical fiber tip was 1/10th of the calibrated light at the tip, such that the majority

of neurons were activated at 5mW/mm2 in this case [3].

2.2.6 Computational Network Model

A network model was used to investigate the hypothesis that sensory and artificial

stimuli differentially activate thalamic neurons, leading to distinct response properties

in the downstream cortex. Specifically, the development of a model allowed direct,

and independent, manipulation of the magnitude and synchrony of input population

activity, whereas we do not have control of these variables experimentally. Towards

this goal, a simple cortical network model was developed and the thalamic input

activity was systematically controlled.

The network was modeled after the thalamocortical circuit of the rodent vibrissa

pathway and the extensive anatomical and computational literature for this model

system [101, 51]. The neural circuit consisted of 400 thalamic neurons that project

to a downstream cortical population of 800 excitatory neurons and 200 inhibitory

neurons. The relative size of the thalamic and cortical populations and the balance

of excitation and inhibition in cortex were based off of previous computational studies

[101], which were scaled down from the true anatomy. The thalamic neurons made

direct synapses on both the excitatory and inhibitory neurons in cortex, allowing

for feedforward inhibition. Additionally, the connectivity to the inhibitory neurons

from the thalamus, and from the inhibitory neurons to the rest of cortex, were more

spatially diffuse to be consistent with anatomical studies [95].

The cortical population was modeled as a collection of quadratic integrate and

fire neurons [89] according to the following set of equations:

v = 0.04v2 + 5v + 140− u+ I (1)
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Table 2.1: Parameters for Izhikevich cortical neurons. The excitatory and inhibitory
cortical neurons in the model have different parameters. Parameters are randomized
across neurons through ri, which is a random variable uniformly distributed on the
interval [0 1] with the subscript i indicating the cell index.

Parameter Excitatory Inhibitory
a 0.02 0.02+0.08ri
b 0.2 0.25-0.05ri
c -65+15r2i -65
d 8-6r2i 2

u = a(bv − u) (2)

where v is a 1000x1 vector of the membrane potential of the cortical neurons and u is

a 1000x1 vector describing the recovery variable instituting the nonlinear dynamics

of the cortical neurons. Spiking was determined by the membrane potential passing a

fixed threshold of 30mV, at which point v → c and u→ u+ d. The parameters were

set according to previous work [89] and are summarized in table 2.1. While u and v

describe the membrane dynamics of the individual neurons, the input, I, delivered

to the cells is responsible for generating the network dynamics. The input delivered

to each cell was composed of a membrane noise term, Im, and summed post-synaptic

potentials from the thalamocortical and intracortical activity, IS, according to the

following set of equations:

I = Im + IS (3)

IS = W TC · STC +WCC · SCC (4)

where W TC is a 1000x400 matrix describing the thalamic synaptic weights, such that

W TC
ij is the strength of the synapse from the jth thalamic neuron on the ith cortical

neuron, and STC (a 400x1 vector) is the thalamic activity from the preceding time

step, where STCj is one if the jth thalamic cell spiked in the preceding time sample and
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zero otherwise. WCC and SCC describe the intracortical synaptic activity in a similar

manner. Im is drawn from a Normal distribution with mean of zero and covariance

K, producing spatially correlated membrane potential fluctuations in the cortical

population [102]. The membrane potential fluctuations were also filtered temporally

over a 10ms window. The connectivity and synaptic weights were extrapolated from

Kyriazi, et al, 1993 and updated according to more recent in-vivo work [101, 26] and

are also summarized in table one. This type of network has previously been shown to

exhibit many of the common response features and rhythms of in-vivo cortical circuits

[89].

The input spikes were drawn from an inhomogeneous Poisson process with rate:

λ(t) = λstim(t) + λspont (5)

where

λstim(t) = t · exp((−t)/τsync) such that

∫
T

λstim(t)dt = M (6)

such that M gave the average number of spikes per neuron per trial in the stimulus

window, T , and τsync determined the synchrony of those spikes. Both τsync and M

were functions of neuron location, x, such that neurons near the center of the stimulus

responded with the greatest synchrony and magnitude, and neurons far from the

center of the stimulus responded with low synchrony and magnitude. The fall off of

these variables with space was dictated by the following Gaussian shaped functions:

M(x) = Mpeak · exp(−(x− x0)2/σ2) (7)

τsync(x) = Speak + 10 ∗ [1− exp(−(x− x0)2/σ2)] (8)

where x gives the location along the linear array of thalamic cells, with x0 at the
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center of the stimulus. Mpeak and Speak determine the magnitude and synchrony,

respectively, at the center of the stimulus where it is maximal, and σ determines how

quickly the magnitude and synchrony fall off with distance from the center of the

stimulus. Speak was systematically varied, while Mpeak was held constant, in the top

portion of figure 2.4, and vice versa for the bottom portion of figure 2.4. Meanwhile,

the σ parameter is controlled in figure 2.5.

While τsync modulated the synchrony of the input spiking activity, this variable

was not explicitly related to commonly used measures of synchrony. Therefore, in

all analyses, the synchrony was calculated according to methods used previously in

the literature [185, 196]. Briefly, the cross-correlogram was computed for pairs of

neurons using the input spikes contributing to the stimulus. The area under the

cross-correlogram within a synchrony window (± 5 milliseconds), normalized for the

number of spikes used to create the cross-correlogram, was calculated for each pair-

wise combination of the central twenty thalamic neurons and averaged across the

permutations to give the synchrony measure. Under this calculation, a synchrony

value of one means that all stimulus-related spikes occur within the synchrony window.

The amplitude, variaibility, and spatial spread metrics were measured from the

population of excitatory cortical neurons within the simulation. The amplitude and

spatial spread were calculated by fitting a Gaussian shape function to the spatial

distribution of spiking activity in the twenty milliseconds following the stimulus, using

the following equation:

M(x) = A · exp(−(x− x0)2/σ2
spread) +B (9)

where again x gives the location along the linear array of cortical excitatory cells, with

x0 at the center of the response. A and σspread give the magnitude (spikes/stimulus)

and spread (number of cells) of the simulated cortical response, where B accounts for

the baseline firing rate of the neurons.
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2.3 Results

Natural sensory stimuli and artificial stimuli both drive neural activation, allowing

the dissection of neural circuits and complex psychophysical tasks aimed at under-

standing how the brain works at a systems level. However, previous literature sug-

gests that sensory and artificial stimuli activate neural circuits in distinctly different

ways [112, 119]. Here, we specifically compared the propagation of neural activity

generated by whisker deflection sensory inputs and electrical and optogenetic stimuli

delivered to the thalamus. Optogenetic stimuli were found to exhibit a mixture of the

properties associated whisker and electrical inputs, and ultimately the experimental

results were well-predicted by systematic variations of the magnitude and synchrony

of population neural activity in a computational model of the thalamocortical circuit.

Finally, we explored the functional consequences of the distinct activation patterns

between sensory and artificial stimuli using a theoretical model to estimate the num-

ber of discriminable cortical responses that can be generated by each stimulus type.

Taken together, these results provide insight into the neural activation patterns and

information content that can be generated by natural and artificial stimuli.

2.3.1 The cortical response is highly nonlinear for whisker, electrical, and
optical stimuli

All experiments utilized in-vivo voltage sensitive dye imaging (VSDI) of layer 2/3 in

the whisker representation of the primary somatosensory cortex with whisker stimuli

delivered to individual whiskers on the face, and electrical and optical stimuli delivered

to the topologically matched ventral postero-medial (VPm) portion of the thalamus

in the anesthetized rodent, according to the methods mentioned in Chapter 1 and

described in detailed in Appendix A.

First, the amplitude of the cortical response was quantified for whisker, electrical,

and optical stimuli of increasing intensity. To do so, the cortical response was averaged

across trials and then averaged spatially within the principal cortical column. The
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mean and standard deviation of the maximum response amplitude was then calculated

and plotted as a function of whisker deflection velocity, electrical stimulation current,

and optical stimulation light intensity.

A representative example of the cortical response to each stimulus type is shown

in figure 2.1(a). For all stimulus types, the response amplitude increased monotoni-

cally as a function of stimulus intensity, and was well approximated by a sigmoidal

function. From the sigmoidal fit, the average threshold whisker deflection velocity

was determined to be 229 ± 139 deg sec−1 (N=12), consistent with previous litera-

ture [180, 146]. Similarly, the average threshold current was 54 ± 20 µA (N=18) and

the threshold light intensity was 87 ± 31 mW mm−2 (N=6). Figure 2.1(b) presents

a compilation of the mean response amplitude across all experiments and all stim-

ulus types. For each experiment, the stimulus intensities are plotted relative to the

threshold stimulus and the response amplitudes are normalized with respect to the

amplitude of the sigmoidal fit. The compilation of all the data illustrates the consis-

tency and similarity of the nonlinear relationship between cortical response amplitude

and the strength of sensory and artificial stimuli.

2.3.2 Whisker stimuli are more sensitive to trial to trial variability

While the mean cortical response showed similar trends for sensory and artificial stim-

uli, the trial to trial variability did not. The trial-by-trial variability was quantified

as the standard deviation of the single trial maximum response amplitudes for each

stimulus type. Figure 2.1(c) presents the summary data for all experiments and all

stimulus types. Because there is no clear relationship between deflection velocity,

microstimulation current, and light intensity, the variability was analyzed as a func-

tion of the normalized mean response amplitude. For whisker stimuli, the trial to

trial variability increased linearly as a function of the response amplitude. At low

response amplitudes, the trial by trial variability matched the variability in noise
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Figure 2.1: Whisker stimuli are more sensitive to trial-to-trial variability. (a) The
response amplitude was quantified as the maximum VSDI signal, after averaging spa-
tially within a single cortical column and across trials, for whisker, electrical, and
optical stimuli. (b) Tuning curves for velocity (top, N=12), current (middle, N=18),
and light intensity (bottom, N=6) across all experiments. Each experiment was
normalized relative to the threshold velocity. (c) The variability in the response am-
plitude was quantified as the standard deviation of the maximum amplitude across
trials, averaged spatially within a single cortical column. The response amplitude
variability for whisker stimuli (top) increases as a function of mean response ampli-
tude (N=12). The response amplitude variability for electrical (middle) and optical
(bottom) stimuli peak at the threshold response amplitude (N=18 for electrical, N=6
for optical).
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trials (gray band, mean of variability in the noise ± one standard deviation across

N=12 experiments), whereas high stimulus intensities exhibited a marked increase in

variability. The variability was binned into the lower, middle, and upper response

amplitudes, corresponding to sub-threshold, peri-threshold, and supra-threshold, re-

spectively. The variability in the peri- and supra-threshold bins were significantly

different from the sub-threshold response amplitudes.

The variability in the cortical response to thalamic microstimulation and opto-

genetic stimulation followed a different trend. At sub-threshold and supra-threshold

response amplitudes, the trial by trial variability was comparable to that of noise trials

(gray band, mean of variability in the noise ± one standard deviation across N=18

experiments). However, near the threshold response amplitude, the trial by trial

variability was significantly higher. When binned in a similar manner to the whisker

stimuli, only the peri-threshold bin was significantly different from the sub-threshold

variability, indicating that the variability returned to baseline at strong response am-

plitudes for electrical and optical stimuli. Importantly, the distinct trends of trial

to trial variability for sensory and artificial stimuli may have implications for the

capacity to generate discriminable cortical responses (see Chapter 5) and influence

behavior (see discussion).

2.3.3 The cortical response to microstimulation exhibits the greatest spa-
tial spread

In addition, the voltage sensitive dye imaging modality enabled the quantification of

the spatial spread of the cortical response to whisker, electrical, and optical stimuli.

Examples of the spatial cortical response to each stimulus type are presented in figure

2.2(a) for varying stimulus intensities. The initial frame of activation was used for

all stimuli (see methods). The spatial spread was quantified as the length of the

major axis, minor axis, and equivalent radius of the contour at 70% of the maximum

amplitude. In this way, the spread measurement was normalized for differences in
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the maximum amplitude across variations in stimulus intensity and stimulus type.

Also, the contour was taken from the sum of Gaussians fit to the raw data in order

to provide a smooth estimate to the contour. Qualitatively, for increasing velocity

of whisker stimuli (figure 2.2(a), top) and light intensity of optical stimuli (bottom),

the area of activation remains restricted to a small region of cortex. For increasing

current amplitude of the electrical stimuli (middle), the area of activation is initially

constrained, but spreads farther across cortex for higher current intensities.

The individual contours for all stimulus intensities are overlaid in figure 2.2(b) for

each stimulus type (light gray is the lowest stimulus intensity, black is the strongest).

Again, it is clear that the spatial spread grew slightly across varying whisker deflection

velocities and optical light intensities, while the spatial spread grows more steeply for

increasing current of electrical stimulation. The average radius of the contours is

plotted as a function of the maximum response amplitude for all experiments in

figures 2.2(c)-(e), for whisker, electrical, and optical stimuli, respectively, along with

the linear fit of the relationship (black line). The linear fits to the trends for the major

and minor axis radii are plotted on the same graph (dashed lines). As in the single

experiment example, the average radius did not increase as a function of the response

amplitude for whisker (slope: 15 µm / unit of activity; 95% confidence interval: [-18,

48]) and optical (slope: 38 µm / unit of activity; 95% confidence interval: [-11, 87])

stimuli. Electrical microstimulation, however, exhibited an increasingly large spatial

spread as the response amplitude increased (slope: 108 µm / unit of activity; 95%

confidence interval: [68, 149]). For comparison, the radius of a cortical column in the

rodent primary somatosensory cortex is approximately 400 µm. For a strong response

(∆F/F0 of 0.4%), the average radius of the 70% contour for whisker (474 µm) and

optical (558 µm) stimuli only extends in nearest neighbor cortical columns, whereas

the 70% contour for electrical stimuli (770 µm) reaches two cortical columns outside of

the principal column, encompassing approximately 2.6 times as much cortical surface
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Figure 2.2: Electrical stimulation activates a significantly larger region of cortex.
(a) The spatial spread was quantified as the average radius of the 70% amplitude
contour. The initial frame of activation was used and the contour was taken from a
parametrized sum of Gaussians fit to the VSDI data. (b) The size of the contours is
similar across whisker deflection velocities (top) and optical light intensity (bottom),
but increases dramatically for increasing electrical stimulation current (middle). (c)
The spatial spread increases slightly as a function of response amplitude for whisker
stimuli (N=12). (d) The spatial spread increases quickly as a function of response
amplitude for electrical stimuli (N=17). (e) The spatial spread increases weakly as a
function of response amplitude for optical stimuli (N=4).
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as the response to whisker stimuli. The trends for the major and minor axis suggest

a continuum between whisker, optical, and electrical stimuli, as the optical stimuli

exhibited a significant increase in the major axis length, but an insensitivity of the

minor axis as the response amplitude increased. These observations are consistent

with the hypothesis that activation of axons locally in the thalamus leads to increased

spatial spread in cortex given that electrical stimuli (Histed et al., 2009), and optical

stimuli to a lesser extent (Cruikshank et al., 2010), are known to activate axons near

the site of stimulation.

2.3.4 Computational model of thalamocortical circuit allows direct con-
trol of thalamic input

Striking differences were observed in the properties of the cortical response to whisker,

electrical and optical stimuli, likely the result of the stimuli activating the thalamus in

fundamentally different ways. Previous studies have shown that the timing precision

and synchrony of population activity in the thalamus are modulated by variations

in the strength of a sensory stimulus. Conversely, literature suggests that electrical

and optical stimuli may synchronize the neurons they activate [191, 16], with higher

current and light intensity causing the recruitment of more neurons. However, as

the current and light spread through the tissue, they recruit different neural ele-

ments. Namely, electrical stimuli have been shown to preferentially activate axons

[83], while optical stimuli are believed to stimulate cell bodies at a lower threshold

[211]. While the literature suggests that whisker, electrical, and optical stimuli may

produce different thalamic population activity, the relative contributions of the mag-

nitude, identity, and synchrony to the static nonlinearity of the cortical response, and

how this compares to the experimental results presented above, remains unknown.

In order to explicitly control which thalamic neurons were activated, and the

degree of synchronization, we built a computational model of the thalamocortical

projection. The network connectivity is illustrated in figure 2.3(a) and was based
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off of previous anatomical and computational studies of the thalamocortical circuit

[101, 26, 51]. The network was a canonical feedforward model, similar to what has

been used extensively to explore neural activity propagation [100]. A population of

thalamic neurons formed the input to the network and the cortical population of in-

terconnected excitatory and inhibitory neurons was the output layer. The synaptic

weights and relative connectivity were drawn from previous experimental and com-

putational work in the rodent vibrissa system (see methods). However, to retain

generality, the neurons in the model were arranged in a linear array, as opposed to

the discrete nature of the cortical columns in the rodent barrel cortex. In this way,

neighboring thalamic neurons synapsed on overlapping cortical populations. As the

distance between thalamic neurons increased, the probability of shared connections

to a single cortical neuron also decreased. The individual synaptic weights were also

drawn according to a probability distribution, the details of which are found in the

methods section.

Each individual cortical neuron was modeled as a nonlinear dynamical system

[89]. Specifically, each neuron was described by two state variables, one being the

membrane potential of the neuron, and the other being a recovery variable. The

membrane potential evolved according to a quadratic integrate and fire model, while

the recovery variable enforced the relative refractory period of the neuron and overall

excitability. Example traces of the membrane potential of a single neuron in response

to a simulated stimulus are shown in top portion of figure 2.3(a) for multiple trials.

Noise was added to the membrane potential of each neuron in order to mimic the

in vivo high conductance state (Destexhe et al., 2003; Ratt et al., 2013). The noise

was correlated across the cortical neurons, such that neighboring neurons experienced

similar fluctuations. The thalamic population activity acted as the input to the cortex

and was generated by controlling the overall spike probability and the degree of syn-

chrony across the thalamic neurons as illustrated by the inhomogeneous Poisson rate
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Figure 2.3: Computational network model of activity propagation in the thalamo-
cortical circuit. (a) The population activity of the VPm thalamus is controlled as the
input to the cortical population. The neurons are arranged spatially in a linear array,
such that neurons are more likely to be connected to their neighbors. The network
promotes feedforward inhibition in that thalamic VPm neurons synapse on both ex-
citatory and inhibitory neurons within the cortical population. Example membrane
potential traces for a single neuron across multiple trials are shown in the top por-
tion of the panel. (b) Cartoon illustrating the inhomogeneous rate function used to
generate the thalamic spikes. The magnitude and synchrony of the thalamic spiking
activity was systematically modulated as the input to the model. (c) Spatial PSTH
and averaged PSTH for the excitatory (top left) and inhibitory (top right) cortical
population in response to the thalamic input (bottom).
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functions in 2.3(b). An example of the input thalamic population activity (bottom)

and output cortical population activity (excitatory middle, inhibitory top) is shown

in figure 2.3(c). For each cell type, the image shows the average activity across the

entire population. The peristimulus time histogram (PSTH) for the central twenty

neurons is shown above and the spatial cross-section, averaged across the first twenty

milliseconds following the stimulus, is on the right. Using this modeling architecture,

we evaluated the same response metrics as the experimental VSDI data, namely the

response amplitude, variability, and spatial spread.

2.3.5 Magnitude and synchrony of population activity control nonlinear
response in network model

The identity, magnitude, and synchrony of the input thalamic population activity

were systematically varied to investigate the relative contributions of these funda-

mental variables on the response amplitude (figure 2.4(c)), variability (figure 2.4(d)),

and spatial spread (figure 2.5(c)) within the model. For the amplitude and variability,

two different inputs were used. In the top portion of figures 2.4(c) and 2.4(d), the

average number of spikes per trial per neuron was fixed, but the synchrony of those

spikes varied to modulate the intensity of the stimulus, as in the cartoon in figure

2.4(a). In the bottom portion of figures 2.4(c) and 2.4(d), the synchrony of the popu-

lation spikes was held fixed at a high level, and the average number of spikes per trial

per neuron was varied to modulate the intensity of the stimulus, as in the cartoon

in figure 2.4(b). The response amplitude was measured as the average number of

spikes in the twenty milliseconds following the stimulus for the central twenty excita-

tory cortical neurons, and grew monotonically as a function of the input synchrony

(top) and number of spikes (bottom). Both were well approximated by a sigmoidal

function, similar to the experimental results of figure 2.1(a).

The trial to trial variability was measured as the standard deviation across trials
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Figure 2.4: Extreme synchrony ensures robust response in the face of trial-to-trial
variability. (a) Cartoon of the input population activity with a fixed number of spikes
per trial, but at varying degrees of synchrony. This input stimulus was used for the
top portion of (c) and (d). (b) Cartoon of the input population activity with a fixed,
high synchrony, but an increasing number of spikes per trial per neuron. This input
stimulus was used for the bottom portion of (c) and (d). (c) The response amplitude
of the central excitatory units in response to systematic variation in the number
and timing of the input spikes. The gray lines indicate alternate values of precision
and spike magnitude. The cortical response is nonlinear with respect to both the
number and timing of the spikes. (d) The variability in the response amplitude of
the central excitatory units in response to systematic variation in the number and
timing of the input spikes. Again, the gray lines indicate alternate values of precision
and spike magnitude. The variability increased with synchrony at a fixed number of
spikes (top), whereas the variability peaked and returned to baseline for a fixed, high
synchrony (bottom).
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of the mean number of spikes following the stimulus across the central twenty excita-

tory cortical neurons. As a function of the input synchrony (figure 2.4(d), top), the

variability increased linearly, with a greater slope for larger input population activ-

ity magnitude. This trend in variability matches the experimental observations for

whisker stimuli in figure 2.1(c), providing support for the hypothesis that synchrony

is an important variable for coding sensory stimuli. Meanwhile, the variability at a

fixed, high synchrony, but increasing number of input spikes (figure 2.4(d), bottom)

peaked at the threshold input intensity. For lower levels of fixed synchrony (gray

lines), the peak in the variability shifted to the right and approached the linear trend

observed for input synchrony (figure 2.4(d), top). The peak variability at thresh-

old matched the experimental observations for electrical and optical stimuli in figure

2.1(c), suggesting that the extreme synchronization generated by electrical and opti-

cal stimuli was responsible for the quenched variability at supra-threshold stimulus

intensities.

In exploring the spatial spread of the cortical response in the model, the identity

of the thalamic population proved to be the most important variable. Again, two

different stimulus profiles were used. To model the spread associated with natural

recruitment of sensory neurons, the number and synchrony of the input spikes were

maximal at the center of the stimulus and fell off for distant neurons, as in figure

2.5(a). The relative contribution of the stimulus surround was modulated by chang-

ing the rate at which the number and synchrony of the input spikes fell off across

space. Alternately, the recruitment of axons by electrical stimulation was modeled

by uniformly recruiting neurons in the surround of the stimulus, regardless of the

distance from the stimulus center, as in figure 2.5(b). The proportion of axons was

varied in order to modulate the surround in this case. Importantly, the timing of

stimulation of axons and cell bodies in figure 2.5(b) was fixed at a high synchrony.

In figure 2.5(c), the spread measurement was calculated from a Gaussian fit to the
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Figure 2.5: Axonal stimulation increases spatial spread by overcoming feedforward
inhibition. (a), (b) The spatial spread of the input was modulated in two different
ways. (a) The number of spikes and synchrony were a function of the spatial location
of the cell. The spatial distribution of the number of spikes and synchrony varied
simultaneously for the top portion of (c). (b) The number of spikes was a function
of the spatial location of the cell, but the synchrony was fixed at a high level. To
simulate the activation of axons, the surrounding neurons were recruited uniformly, as
opposed to (a) where the nearby neurons were activated first as the spread increased.
(c) For a given spread of the number of spikes and synchrony of the input, the
spatial spread of the simulated excitatory cortical neurons remained constant, or
slightly decreased, as a function of the response amplitude (top). The gray lines
indicate alternate values of input spread. When axons were stimulated, according
to the description in (b), the spread in the output instead increased as a function
of the response amplitude (bottom). The gray lines indicate alternate values for the
proportion of axons stimulated.
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spatial cortical response, similar to the analysis in figure 2.3, and was independent

of the response amplitude. For a fixed input spread (top), the output spread was

constant, or decreased, as a function of the response magnitude when the number

and synchrony of spikes decreased with distance from the center of the stimulus, as

in figure 2.5(a). This trend was consistent across a wide range of the input spread

and was similar to the experimental results for whisker and optical stimuli in figures

2.2(c) and 2.2(e), respectively. Mechanistically, the focal spatial activation in the

model was dependent on spatially diffuse feedforward inhibition. The feedforward

inhibition recruited by the synchronous and low latency response in the center of

the stimulus prevented excitation in the surround by the less synchronous and longer

latency peripheral input.

Axonal stimulation (figure 2.5(c), bottom), however, led to an increase in the

spatial spread as a function of the response amplitude, similar to the experimental

results observed for electrical stimuli in figure 2.2(d). The gray lines display the trend

for varying ratios of axon to cell body activation. Increasing the proportion of axons

stimulated accentuated this effect, while stimulating only the cell bodies eliminated it.

The increasing spread in cortex was mediated by the spatially diffuse, but temporally

precise, activation of axons within the input stimulus surround, which, due to the

high synchrony, activated the cortical surround before feedforward inhibition could

begin to restrict the spatial spread.

The computational results support the hypothesis that the static nonlinear prop-

erties, including the amplitude, variability, and spatial spread, of the cortical response

are determined by the identity, magnitude, and synchrony of the input population.

Specifically, the model predicts that the extreme synchronization believed to occur

with electrical and optical stimuli caused the highly nonlinear transformation in cor-

tex, whereas the stimulation of cell bodies, and not axons, is responsible for the

spatially constrained cortical response to whisker and optical stimuli.
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2.4 Discussion

A combined experimental and computational approach was employed to assess the

nonlinear propagation of sensory- and artificially-evoked neural activity to down-

stream structures. We specifically studied this in the context of neural propagation

in the thalamocortical circuit, with voltage sensitive dye imaging used to measure

the cortical response to whisker, electrical, and optogenetic inputs within the rodent

vibrissa somatosensory system. Using this technique we found that whisker stimuli

of increasing velocity produce a weakly nonlinear increase in the mean response am-

plitude, with high trial-to-trial variability, in a fixed, focal spatial location. Electrical

stimuli, on the other hand, exhibited a highly nonlinear modulation of the response

amplitude, with little trial-to-trial variability except at the threshold current, over an

increasingly large region of the cortical space. Optical stimuli displayed a mixture of

the properties observed with whisker and electrical stimuli, where the nonlinearity of

the amplitude and variability closely matched that of electrical stimulation, and the

spatial response properties were more akin to that of whisker stimuli.

A computational model of the thalamocortical circuit was then used to test the

hypothesis that the differential response properties in cortex to whisker, electrical,

and optical inputs were due to the distinct ways in which the stimuli modulated the

identity, magnitude, and synchrony of the neurons activated in the thalamus. The

model attributed the quenched variability at supra-threshold intensities of electrical

and optical stimuli to the extreme synchronization of the thalamic population, with

increasing stimulus intensity recruiting a growing number of neurons. Meanwhile, the

model indicated that the spatially focused cortical activation caused by whisker and

optical stimuli was due to the preferential stimulation of cell bodies as opposed to

fibers of passage. Taken together, the experimental and computational manipulations

of the identity, magnitude, and synchrony of thalamic population activity, combined

with measurement of the resulting downstream cortical activity, reveal the relative
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contributions of these fundamental variables of population activity to the nonlinear

processing of the thalamocortical circuit and the functional relevance for delivering

information to the brain.

The thalamocortical circuit was used for this study due to the extensive liter-

ature detailing the anatomy of the network [51]. Thalamic neurons are known to

make weak, noisy synapses onto downstream cortical neurons, and these connections

comprise a relatively small percentage of the incoming synapses compared to intra-

cortical connections [26]. This anatomical wiring alone has led many to suggest that

synchronization of the thalamic neurons be necessary for the reliable activation of

downstream cortical neurons [24, 177]. The experimental and computational results

of this study further support the importance of thalamic synchronization in driving

cortical activity. Within the model, high synchrony was found to reduce trial-by-trial

variability as the number of synchronously active neurons increased above threshold.

Experimentally, the electrical and optical stimuli, which are believed to synchronize

neurons [191, 16], produced a similar reduction in the trial-by-trial variability in the

cortical response as measured with voltage sensitive dye imaging. However, outside

of the context of the anatomical wiring in the thalamocortical projection, the relative

importance of synchronization on neural propagation may be substantially different.

Indeed, an entire computational field has been built on exploring the consequences

of neural circuit anatomy on propagation within networks [100]. The work has pri-

marily been based on the use of the “feedforward network” architecture, where the

rate of convergence and divergence of synaptic connections from one stage to the

next, and the strength of these connections, are the key parameters defining the

anatomy of a neural circuit [100]. For a network with sparse connectivity and high

synaptic weights, synchrony does not play a significant role in activity propagation,

and can even reduce the information content of the firing rate code [121]. However,

for dense connectivity and weak synaptic strengths, synchrony emerges and ensures
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the reliable propagation of activity to downstream structures [52]. To study the role

of precise timing in propagation within simulated neural networks, the concept of a

“pulse packet” was introduced [1]. A pulse packet describes the population activity

input that initiates the propagation downstream, where the number of spikes and

their relative timing are the only two parameters. Similar to the results in this study,

previous simulation work has systematically varied the pulse packet parameters and

quantified the transformation across a single stage of the feedforward network, finding

that the timing precision determines the sensitivity of the nonlinearity in spiking of

the downstream neural population [1].

While not a generalized feedforward network, the model used in this study con-

tains dense, weak synaptic connections and a phenomenologically accurate neuron

model. Previous work has utilized the integrate and fire neuron, whereas this study

used a quadratic integrate and fire neuron with a recovery variable, which has been

shown to accurately describe spike initiation dynamics for a broad class of neurons

[89]. Additionally, the properties of the input were varied systematically, similar to

the pulse packet parameters described above. The model in this study expanded the

concept of the pulse packet spatially, such that the location/identity of the neurons

activated was controlled in concert with the number and precision of spikes, allowing

direct comparison to the spatial cortical measurements afforded by the VSDI tech-

nique. The model only contained a single projection, from the thalamus to layer 4

in cortex, whereas VSDI primarily represents subthreshold layer 2/3 activity [72].

However, the stimulus-driven onset of cortical activity, as measured through VSDI,

reflects the supra-threshold spiking activity projecting from layer 4 [152, 11].

The agreement in the computational and experimental results supports a concep-

tual model for the distinct ways in which natural and artificial inputs activate neural

circuits. Sensory stimuli modulate thalamic synchrony to drive downstream cortical

activity, whereas electrical and optical stimuli activate a population of neurons at a
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fixed, high synchrony. This dichotomy has direct relevance to the use of electrical and

optical stimuli as surrogates for sensory stimuli in driving neural circuits. An obvious

example is the development of sensory prosthesis applications where the goal is to

produce functionally relevant patterns of activation in sensory neural circuits to re-

place missing afferent input. The cochlear implant [202], and more recently the retinal

prosthesis [87], has been effective at restoring functional levels of sensation through

electrical stimulation of the peripheral nervous system. However, delivery of artificial

inputs to the central nervous system has proven more difficult [19, 17, 82, 81, 71],

potentially due to the extreme synchronization and mixed activation of axons and

cell bodies caused by electrical stimulation. Behavioral experiments in non-human

primates have indicated that sensory and electrical stimuli produce functionally dif-

ferent neuronal dynamics [119], while anesthetized work has revealed complex signal

propagation generated by electrical stimuli in the primate visual system [112]. These

differences may arise due to the extreme synchronization of electrical stimuli, and

specifically through the differential recruitment of inhibitory elements in the circuit

[29, 27].

More generally, the distinction between sensory and artificial stimuli applies to the

use of surrogate stimuli in dissecting sensory neural circuits. Recently, optogenetic

stimuli have become commonplace in exploring neural circuit function across a variety

of brain regions [99, 211, 212, 105]. Pulsed excitation via Channelrhodopsin (ChR2),

or other excitatory opsins, may lead to unnaturally high levels of synchrony and

engage the circuit in a pathological, or at least non-physiological, manner. Principled

design of the stimulation profiles and parameters for electrical and optical stimuli

may be able to overcome the limitations described here, generating neural activity

patterns more akin to those generated by sensory stimuli. For instance, ramp stimuli

have been used for optogenetics on long timescales in order to avoid synchronization at

the onset of the stimulus [159]. Additionally, it remains unknown how the underlying
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brain state may affect the results described here. Under anesthesia, the thalamic state

in these experiments can be characterized by low spontaneous firing rates and a high

degree of bursting. In this way, the neurons in the thalamus may have been overly

susceptible to the synchronization caused by electrical and optical stimuli. However,

in a desynchronized thalamic state, characterized by high spontaneous firing rates

and few bursts, intermittent and temporally dispersed refractory periods across the

thalamic population may limit the overall degree of stimulus driven synchronization,

leading the neural response properties induced by artificial stimuli to approach those

of natural sensory stimulation. Ultimately, knowledge of the mechanisms by which

sensory and artificial stimuli activate neural circuits informs the design of stimulus

patterns or signal sets that optimize the information capacity of artificial stimuli and

utility in conveying surrogate sensory signals.
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CHAPTER III

CHARACTERIZATION OF THE NONLINEAR

DYNAMICS OF CORTICAL ACTIVATION IN

RESPONSE TO SURROGATE THALAMIC DRIVE

Portions of this work were presented in poster form at the following conference:

Millard, DC, Wang, Q, Gollnick, CA, & Stanley, GB. Characterization of the dynam-

ically varying spatiotemporal cortical response to patterns of sensory and electrical

stimulation in the thalamocortical network. Society for Neuroscience Annual Meet-

ing, New Orleans, LA, October 2012.

3.1 Introduction

In the previous chapter, sensory and artificial stimuli were found to activate the

thalamocortical circuit with distinct neural response properties, even for single stim-

uli. However, the delivery of spatiotemporal patterns of activity will be required to

faithfully represent the dynamically changing sensory experience in a prosthetics ap-

plications. Further, the use of patterned stimuli is an important tool for revealing

neural circuit dynamics in an experimental setting. Here, in this chapter, we inves-

tigated the nonlinear dynamics of the thalamocortical circuit in response to simple

patterns of sensory and artificial stimuli.

Sensory stimuli are known to be coded by dynamic patterns of action potentials

across neural circuits [86, 51, 204]. Furthermore, the majority of experimental evi-

dence suggests a nonlinear dynamical relationship. The simplest example is the use

of the “paired pulse” stimulus, in which two stimuli are delivered in quick succession,

separated in time by a varying inter-stimulus interval. By comparing the response of
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the second stimulus to the first, the nonlinear dynamics of the circuit can be charac-

terized as suppressive (i.e. the second response is smaller than the first) or facilitative

(i.e. the second response is stronger than the first). This paradigm has been particu-

larly well-studied in the rodent vibrissa system [173, 33, 15, 14, 197, 198]. However,

because the majority of previous studies have utilized single electrode recordings, the

spatial properties associated with the nonlinear dynamics remains unknown.

Additionally, the comparative nonlinear dynamics for sensory and artificial stim-

uli have not been studied in detail. Electrical stimulation has been used extensively

in vitro to study synaptic and neural circuit dynamics when sensory or other ex-

ternal stimulation was not possible [190, 191]. Similarly, electrical stimulation has

been used in vivo to probe the nonlinear dynamics of hippocampal circuits [175, 10],

among others, for which natural stimuli are not clearly defined or easily presentable

within an experimental setting. Yet, recent work has provided behavioral [119] and

electrophysiological [112] evidence that the nonlinear dynamics, within the same neu-

ral circuit, are different for sensory and electrical stimuli. The extent to which this is

generally true across neural circuits, and the mechanism by which this occurs, is not

well understood and has implications for the exploration of neural circuit dynamics

and the delivery of time varying surrogate sensory inputs to the brain.

In this chapter, we experimentally investigate the nonlinear dynamics of the thala-

mocortical circuit of the rodent vibrissa somatosensory system in response to whisker,

electrical, and optogenetic inputs using voltage sensitive dye imaging to record the

spatiotemporal stimulus-evoked cortical activity. We find that while both whisker de-

flections and thalamic microstimulation produced paired pulse suppression for supra-

threshold stimuli, thalamic microstimulation activated an additional dynamical mode

characterized by paired pulse facilitation of sub-threshold inputs. Additionally, the fa-

cilitation dynamics caused by thalamic microstimulation induced a significant spatial
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sharpening of the cortical response. Through a series of further experiments and com-

putational results, we suggest that the additional dynamical mode of facilitation was

caused by the activation of thalamic bursting through the extreme synchronization

of the reticular thalamus by electrical and optogenetic stimulation of the thalamus.

3.2 Methods

3.2.1 Surgery and preparation

The same methods described previously (see Appendix A for more detail) were used

for the experiments in this chapter. Briefly, voltage sensitive dye imaging was used

to record the response of primary somatosensory cortex in the anesthetized rodent to

whisker deflections on the face and thalamic microstimulation.

3.2.2 Thalamic microstimulation

An electrode positioned in the thalamus was used to deliver single electrical cur-

rent pulses to evoke cortical responses in the somatosensory pathway. The electrical

stimuli were created using a digital stimulus generator (Model: DS8000, WPI Inc.,

Sarasota, Florida) and delivered using a digital linear stimulus isolator (Model: DLS

100, WPI Inc., Sarasota, Florida) acting in current source mode. All individual elec-

trical stimuli were charge balanced, cathode-leading, symmetric biphasic waveforms

of 200 microseconds duration per phase. A paired pulse stimulus paradigm was used,

where two stimuli with the same current amplitude were delivered separated by an

inter-stimulus interval. Current amplitudes (30-150 microamps) and inter-stimulus

intervals were varied (50, 100, 150, 200, 250, 500 milliseconds) were systematically

varied.

3.2.3 Whisker stimulation

Sensory stimulation (S-Stim) was applied through computer controlled whisker de-

flections. Whiskers were trimmed at approximately 12mm from the face, and were
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inserted into a glass pipette fixed to the end of a calibrated multi-layered piezoelec-

tric bimorph bending actuator (range of motion, 1 mm; bandwidth, 200 Hz; Physik

Instrumente (PI), Auburn, MA) positioned 10 mm from the vibrissa pad. Vibrissae

were always deflected in the rostral-caudal plane. Punctate deflections consisted of

exponential rising and falling phases (99% rise time, 5 ms; 99% fall time, 5 ms) and

angular deflection velocities of 75, 150, 225, 300, 450, 600, 900, and 1200 deg/s were

used as mechanical probe stimuli (S-Stim). The same inter-stimulus intervals listed

above were used for whisker stimuli in the paired pulse paradigm.

3.3 Results

Neural activity varies on fast timescales within the early stages of sensory pathways.

In this way, surrogate sensory inputs must contain temporal patterns of stimulation to

faithfully represent functionally relevant signals in the brain. Here, we experimentally

measure the nonlinear dynamics of the thalamocortical circuit to simple patterns of

whisker and thalamic microstimulation inputs using voltage sensitive dye imaging

(VSDI). As with the static nonlinearity in Chapter 2, we find that the dynamic

nonlinearity exhibits distinct properties for whisker and thalamic microstimulation

inputs, but that the additional mode observed for thalamic microstimulation may

provide functional benefits by spatially sharpening the response in cortex.

3.3.1 Nonlinear paired pulse suppression of the cortical response to whisker
stimuli

Temporal patterns of sensory input are known to produce nonlinear responses even

in the early sensory pathways. A significant portion of this literature comes from

experiments in the thalamocortical circuit of the rodent whisker system, using pairs

or triplets of individual whisker deflections to map out the nonlinear dynamics of

neurons in the primary somatosensory cortex [173, 33, 15, 14, 197, 198]. These studies

have principally detailed “paired-pulse suppression”, where the response to the second
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stimulus in a pair is suppressed due to the presence of a previous response occurring

immediately prior. Using the voltage sensitive dye imaging setup described earlier

(and in Appendix A), we investigated the spatiotemporal nonlinear properties of the

cortical response to pairs of whisker stimuli.

We used pairs of whisker stimuli at varying inter-stimulus intervals and varying

velocity to directly probe the second order nonlinear dynamics of the system. Panels

(a) and (b) of figure 3.1 show an example of the temporal response in cortex, averaged

across trials, to pairs of whisker deflections with low and high velocity, respectively.

For the low velocity stimuli in figure 3.1(a), the response to the second stimulus was

equal in strength to the response to the first stimulus, except at the 50ms inter-

stimulus inteval, indicating a very short duration for the nonlinear dynamics. On the

other hand, the high velocity stimuli in figure 3.1(b) exhibited profound paired pulse

suppression. The response to the second stimulus was strongly suppressed relative to

the first. The suppression relaxed for longer inter-stimulus intervals, but at a much

slower time constant than for the low velocity whisker stimuli in figure 3.1(a). This

suggests an activity dependent modulation of the nonlinear dynamics, consistent with

previous reports in the barrel cortex [14]. Whereas Boloori et al. found the cortical

response suppression lasted for ∼100ms, the cortical response did not fully recover

until >500ms after the first stimulus in our experiments. The increased duration of

suppression may be related to inhibitory mechanisms specific to layer 2/3, from which

the majority of the VSDI signal originates. But in general, across both studies, the

suppression was more profound for stronger sensory inputs.

To determine whether the nonlinear suppression was consistent on a trial-to-trial

basis, we analyzed single trials of the VSDI signal in figure 3.1(c) for the 150ms inter-

stimulus interval. On a single trial basis, the peak response to the second stimulus

was plotted relative to the peak response to the first stimulus. Each data point

is in response to a single presentation of the paired pulse stimulus, with the color
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Figure 3.1: Paired pulse suppression of the cortical response to whisker stimuli. (a)
Cortical response to pairs of weak whisker stimuli. The response to the second stim-
ulus was suppressed only for the 50ms inter-stimulus interval. (b) Cortical response
to pairs of high velocity (1200 deg/sec) whisker deflections at varying inter-stimulus
interval. The response to the second stimulus was suppressed relative to the first,
with the suppression relaxing for longer inter-stimulus intervals. The response to the
first and second stimulus are plotted for all single trials across all whisker deflection
velocities at the 150ms inter-stimulus interval for a single experiment (c) and all ex-
periments (d). When plotted across all experiments, the response amplitudes were
normalized to the mean response amplitude to the strongest stimulus.
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indicating the velocity of the whisker deflections. As the velocity of the whisker

deflections increased, the response to the first stimulus also increased, consistent with

the results in Chapter 2. However, for all velocities, the response to the second

stimulus was suppressed relative to the first for the majority of trials, as most of the

data points fell below the unity line (black). A few trials at low velocity showed strong

responses to the second stimulus, with no response to the first, but this occurred at

low probability. This is consistent with the response to the second stimulus being

independent of the first, and responding probabilistically in the same manner as the

first response. Figure 3.1(d) summarizes the data across four experiments, where the

data from each experiment has been normalized. Again, the majority of trials lie

below the unity line, indicating a prevalence for paired pulse suppression amongst

the cortical population in response to pairs of whisker deflections.

3.3.2 Stimulus-dependent bimodal nonlinear dynamics of the cortical re-
sponse to thalamic microstimulation

Within the same experiments, we also recorded the cortical response to pairs of tha-

lamic microstimulation pulses, in order to compare the nonlinear dynamics between

sensory and artificial stimuli. Figure 3.2 presents the results from these experiments.

Panels (a) and (b) of figure 3.2 show an example of the temporal response in cortex,

averaged across trials, to pairs of thalamic microstimuli with low and high current,

respectively. While the high current stimuli in figure 3.2(b) exhibited paired pulse

suppression similar to high velocity whisker deflections in figure 3.1(b), the low cur-

rent stimuli in figure 3.2(a) produced a dramatically different nonlinear response.

For inter-stimulus intervals of 100-200ms, the response to the second stimulus was

strongly facilitated even though the first stimulus was sub-threshold and produced

no cortical response.

The facilitation and suppression were consistent across trials for sub- and supra-

threshold stimuli, respectively. The response to the second stimulus is plotted relative
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Figure 3.2: Bimodal nonlinear dynamics of the cortical response to thalamic micros-
timulation. (a) Cortical response to pairs of weak electrical stimuli. The response to
the second stimulus was facilitated relative to the first, but only for the 100-200ms
inter-stimulus intervals. (b) Cortical response to pairs of strong (100µA) electrical
stimuli at varying inter-stimulus interval. The response to the second stimulus was
suppressed relative to the first, with the suppression relaxing for longer inter-stimulus
intervals. The response to the first and second stimulus are plotted for all single trials
across all electrical stimulus currents at the 150ms inter-stimulus interval for a single
experiment (c) and all experiments (d). When plotted across all experiments, the re-
sponse amplitudes were normalized to the mean response amplitude to the strongest
stimulus.
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to the response to the first for single trials and varying current amplitude in figure

3.2(c) for the 150ms inter-stimulus interval. For the lowest current intensity (dark

blue), there was no response to either stimulus presentation. At a slightly higher cur-

rent intensity (light blue), the response to the second stimulus was strongly facilitated

for each trial, leading to a cluster of points in the upper left portion of figure 3.2(c).

Importantly, the clustering in the upper left portion of the axes distinguished the

reliable facilitation of electrical stimulation from the lack of nonlinear dynamics for

sub-threshold whisker inputs in figure 3.1(c),(d). At the highest current intensities

(yellow and orange), the response to the second stimulus was consistently suppressed

relative to the first, leading to a cluster in the lower right portion of the axes. At a

threshold stimulus intensity (green), the response to the first stimulus varied signifi-

cantly on a trial-to-trial basis, as seen in Chapter 2, while the response to the second

stimulus was strongly negatively correlated with the response to the first stimulus.

In this way, a weak response to the first stimulus was associated with facilitation of

the second response, while a strong response to the first stimulus elicited suppression

of the second response, all for the same stimulus intensity.

The data is summarized in figure 3.2(d) across animals, where the responses were

normalized within experiments. Again, the cluster in the top left indicates facili-

tation, whereas the cluster in the bottom right represents suppression. Threshold

stimuli occupy the space between the two clusters, where the response to the sec-

ond stimulus was negatively correlated with the response to the first stimulus on a

trial-to-trial basis. The consistency of the pattern across animals (N=4) established

the distinct bimodality of the cortical nonlinear dynamics in response to thalamic

microstimulation as compared to sensory stimuli.
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3.3.3 Facilitation from sub-threshold thalamic microstimulation is a gen-
eral phenomenon

Thalamic microstimulation produced activity-dependent bimodal nonlinear dynamics

in the cortical response, while whisker stimuli only produced suppression. Here we

directly tested whether the facilitation dynamics were exclusive to pairs of electrical

stimuli, or if combined patterns of whisker and electrical inputs could cross-facilitate.

Specifically, we explored the ability of whisker stimuli to facilitate thalamic micros-

timulation, and vice versa.

First, we identified a sub-threshold stimulus intensity of thalamic microstimulation

that was known to cause the nonlinear facilitation described in the previous section

at a 150ms inter-stimulus interval. We refer to this stimulus as AF . Figure 3.3(a)

shows the temporal response (top) to thalamic microstimuli of increasing current

intensity when preceded by AF . The maximum amplitude of the cortical response

to the test stimuli is plotted as a function of the stimulus current (bottom), with

(gray) and without (black) the conditioning stimulus, AF . The conditioning stimulus

dramatically facilitated the cortical response to the test electrical stimulation, shifting

the stimulus-response curve to the left by 50µA.

Now, in figure 3.3(b), we preceded whisker deflections of varying velocity by the

same AF conditioning stimulus. The temporal response, averaged across trials, is

shown in the top portion of the figure, while the maximum response as a function of

the whisker deflection velocity is shown in the bottom portion of the figure. When

the whisker stimuli were preceded by the conditioning electrical stimulus, AF , the

stimulus-response curve was again shifted to the left, indicating that electrical stimuli

were capable of facilitating the response to whisker stimuli.

By comparison, figure 3.3(c) presents the cortical response to AF when preceded

by whisker deflections of varying velocity. From the temporal response, averaged

across trials, in the top portion of figure 3.3(c) it is clear that whisker stimuli, of
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Figure 3.3: Thalamic microstimulation facilitates whisker and electrical inputs. (a)
Top: A sub-threshold electrical stimulation current was delivered 150ms before a
second stimulus of varying stimulus intensity. Bottom: The sub-threshold electrical
stimulus shifted the current-response relationship to the left compared to when only a
single stimulus was delivered. (b) Top: A sub-threshold electrical stimulation current
was delivered 150ms before a whisker deflection of varying velocity. Bottom: The sub-
threshold electrical stimulus also shifted the velocity-response relationship to the left,
as compared to a single whisker deflection. (c) Top: A whisker deflection of varying
velocity was delivered 150ms before an electrical stimulus with the same current that
produced facilitation in (a) and (b). Bottom: While the current caused facilitation
in (a) and (b), no whisker velocity was able to cause facilitation of the electrical
stimulus.
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any velocity, were not capable of facilitating an electrical stimulus. The data are

summarized in the bottom portion of figure 3.3(c), where the black bar represents

the mean response and variability to the sub-threshold electrical stimulus without

any preceding whisker stimulus. They gray bars indicate the mean response and

variability to the sub-threshold electrical stimulus with preceding whisker stimuli of

increasing deflection velocity.

These results suggest that the conditioning electrical stimulus activates a state

trajectory in the thalamocortical circuit capable of facilitating any subsequent input

into the circuit. Whisker stimuli, on the other hand, were not capable of activating

this state trajectory in the thalamocortical circuit. In this way, the facilitation was

a general phenomenon of the thalamocortical circuit, but could only be engaged by

microstimulation.

3.3.4 Nonlinear facilitation sharpens the spatial cortical response

Using the spatiotemporal VSDI signal, we analyzed the spatial properties of the non-

linear dynamics detailed above. Figure 3.4 presents an example of the spatiotemporal

evolution of the cortical response to supra-threshold whisker and electrical inputs, in

panels (a) and (b), respectively, along with the cortical response to a facilitated elec-

trical stimulus in panel (c). Consistent with the results in Chapter 2, the cortical

response to a whisker deflection in figure 3.4(a) was constrained to a focal location

in cortex, while the response to thalamic microstimulation in figure 3.4(b) spread

across a large region of cortex. The cortical response to the facilitated electrical stim-

ulus, however, was more similar to the response to a whisker deflection than to an

electrical stimulus. The activation was spatially localized to a small region of cortex

topographically aligned to the position of the electrode in the thalamus.

The initial frames of activation in response to the three conditions are directly

compared in figure 3.4(d), where the cortical columns within the row containing the
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Figure 3.4: Nonlinear facilitation sharpens spatial cortical response. (a) The cortical
response to a supra-threshold whisker stimulus was localized in a focal region of cortex.
(b) The cortical response to a supra-threshold electrical stimulus spread throughout
a large region of cortex, even in the initial frame. (c) The facilitated response to
a second, normally sub-threshold, microstimulation pulse was localized in a focal
region of cortex. (d) The initial frame of activation illustrated the differences across
the stimuli. A Gaussian fit to the activity with the row containing the principal
whisker (white cortical columns) is below each image. When overlaid (right), the
response to the facilitated electical stimulation and the whisker stimulation activated
a similar region of cortex.
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principal cortical column are outlined in white. A Gaussian fit to the average activa-

tion within the cortical row provided a one-dimensional representation of the spread

across cortex. The Gaussian fits to the supra-threshold whisker (blue) and electri-

cal inputs (red), along with the facilitated electrical stimulus (green) are presented

below the respective initial frames of activation, and are overlapped to the right por-

tion of the panel. When overlapped, the whisker and facilitated electrical stimulus

are qualitatively much more spatially constrained than the supra-threshold electrical

stimulus.

A quantitative analysis of the spatial spread for the three stimulus types is shown

in figure 3.5. The example initial frames for the whisker, electrical, and facilitated

electrical stimuli are repeated for clarity in panels (a), (c), and (e) of figure 3.5, re-

spectively. In figure 3.5(b), the one-dimensional profile of the VSDI signal is shown

for the row containing the principal cortical column, as in figure 3.4(d). The mean

and standard deviation of the response within each cortical column, across trials, are

given by the data point and error bars, and the gray shadow indicates the princi-

pal cortical column matched to the deflected whisker. With increasing velocity, the

maximum amplitude of the response increased, but the activation remained focused

in the principal cortical column and the immediate neighboring columns. Panels (d)

and (f) of figure 3.5 present the data in a similar format for supra-threshold and fa-

cilitated electrical stimuli, respectively. In the example in figure 3.5(d), the response

amplitude and spread increased as the current amplitude increased. For the highest

current, the activation in cortex spread across the entire row of cortical columns, and

the peak was located outside the principal cortical column. For the facilitated elec-

trical stimulation in figure 3.5(f), the spread was comparatively small and the peak

occurred in the principal cortical column.

Figure 3.5(g) plots the width of the Gaussian fit against the amplitude of the

response for each stimulus type. For whisker stimuli and the facilitated electrical
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Figure 3.5: Facilitated cortical response to microstimulation activates same area as
whisker stimulation. (a) Example of initial frame in response to a whisker stimulus.
(b) Activation across the row containing the principal cortical (indicated by gray bar)
for whisker deflections of varying velocity. (c) Example of initial frame in response to
an electrical stimulus. (d) Activation across the row containing the principal cortical
(indicated by gray bar) for electrical stimulation of varying current. (e) Example
of initial frame in response to a facilitated electrical stimulus occurring 150ms after
an initial sub-threshold electrical stimulus. (b) Activation across the row containing
the principal cortical (indicated by gray bar) for an electrical stimulus of varying
current delivered 150ms after a previous electrical stimulus of the same current. (g)
For increasing response amplitude, the spread of a supra-threshold electrical stimulus
increased, while the response to whisker inputs and facilitated electrical stimuli had a
constant spread. (h) Electrical stimulation from a supra-threshold current activates a
significantly larger region of cortex than whisker inputs or facilitated electrical stimuli.
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stimuli, the slope of the best fit line was not significantly different from zero, similar

to the spatial results in Chapter 2, whereas the width of the response to electrical

stimulation increased as the amplitude of the response increased, again similar to the

results of Chapter 2. We averaged the width measurements across all supra-threshold

stimulus intensities (> 0.1% VSDI amplitude) for each stimulus type and found that

the width of the response to electrical stimulation was significantly larger than for

whisker and facilitated electrical stimuli, which were not significantly different from

each other (figure 3.5(h)).

3.3.5 Optogenetic stimulation of the thalamus also exhibits bimodal non-
linear dynamics

In a separate set of experiments (N=6), we performed an identical analysis for opto-

genetic stimulation of the thalamus and found a similar bimodality in the nonlinear

dynamics as with thalamic microstimulation. Figure 3.6(a) presents an example of the

cortical response to a sub-threshold light intensity (top) and a supra-threshold light

intensity (bottom), each at a 150ms inter-stimulus interval. For the sub-threshold

light intensity, the majority of trials exhibited strong facilitation, whereas suppres-

sion was observed on all trials at the supra-threshold light intensity. In figure 3.6(b),

the response to the second stimulus is plotted relative to the resonse to the first for

each trial and each stimulus intensity. Similar to the thalamic microstimulation re-

sults described above, three clusters are apparent in this representation of the data.

At very low stimulus intensities, there was no response to either of the two stimuli. At

intermediate stimulus intensities, the majority of trials exhibited facilitation, forming

a cluster in the upper left portion of the axes. At the highest stimulus intensities, the

response to the second stimulus was suppressed relative to the response to the first,

forming a cluster in the lower right portion of the axes. The same three clusters are

present in the compilation of data across animals, in figure 3.6(c).
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Figure 3.6: Optogenetic stimulation of the thalamus also exhibits bimodal nonlinear
dynamics. (a) Example of the cortical response, averaged within a single cortical
column, to a sub-threshold (top) and supra-threshold (bottom) optogenetic stimulus.
Both single trials (gray) and the mean (black) are presented. (b) The response of the
second stimulus is plotted against the response of the first stimulus for single trials
of varying light intensity. Points above the unity line (black) were facilitated, while
points below the unity line were suppressed. (c) Compilation of data in (b) across
all animals (N=6). The responses were normalized, for each animal, relative to the
mean response for the strongest light intensity during that experiment. Optogenetic
stimulation exhibited a mixture of facilitation and suppression, with the facilitation
less reliable on a trial-to-trial basis.

However, as compared to the thalamic microstimulation results in figure 3.2, op-

togenetic stimuli were less reliable in producing facilitation. This can be seen qualita-

tively by observing the data points spanning between the lower left cluster at the ori-

gin and the suppression cluster. On these trials, the second response was suppressed

relative to the first, even though the response to the first stimulus was relatively

small. In figure 3.2(d), no data points were observed between the lower left cluster

and the suppression cluster across four animals. This slight distinction between the

thalamic microstimulation and optogenetic stimulation may provide evidence towards

a mechanism for the facilitation (see discussion).

Additionally, the optogenetic stimulation produced a substantially smaller stimu-

lation artifact than thalamic microstimulation, allowing the direct recording of VPM

units. In all cells recorded (N=4), facilitation existed at the level of the thalamus,

while suppression occurred in only one of the four cells. An example cell is shown
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Figure 3.7: Facilitation occurs at the level of VPM for optogenetic stimuli. (a) Action
potential waveform for an example VPM cell. Single action potentials (gray) and the
mean across all action potentials (black) are shown. (b) Rastergram and peri-stimulus
time histogram for the single-unit VPM cell in (a) in response to paired optogenetic
stimuli of intermediate (top) and strong (bottom) intensity. Within the rastergram,
red spikes belong to an identified burst. (c) The response of the second stimulus is
plotted against the response of the first stimulus for various light intensities. The
response was measured as the average number of spikes elicited within 20ms of the
stimulus onset.

in figure 3.7, with the single-unit waveform in panel (a). The single cell was driven

by the same paired optogenetic stimulus used in figure 3.6, consisting of two five

millisecond pulses of light at varying light intensity, separated by a 150 millisecond

inter-stimulus interval. The rastergram and peri-stimulus time histogram in the top

and bottom portions of figure 3.7(b) show the response of the cell to an intermedi-

ate (top) and strong (bottom) light intensity. In response to the intermediate light

intensity (top), the cell responded reliably across trials, but only with a single spikes

or an occasional burst (red spikes in the rastergram belong to a burst). The response

to the second stimulus was facilitated, responding more often with two spikes per

stimulus, and often in the form of a burst. Similarly, the response was facilitated for

the strong light intensity (bottom) as well. The cell responded reliably with a burst

for the first stimulus, however, the bursts contained more spikes on average for the

second stimulus.

Similar to the VSD analysis above, the response to the second stimulus was plotted
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against the response to the first stimulus for varying light intensity. Contrary to the

VSD results, no suppression occurred for this example cell at any light intensity, as

all data points were above the unity line (black). Only one of the four cells exhibited

a transition from facilitation to suppression as the light intensity increased. Again,

this provides evidence to the mechanism of the facilitation, suggesting that it occurs

at the level of the thalamus, whereas the suppression is likely a cortical phenomenon

(see discussion).

3.4 Discussion

We used voltage sensitive dye imaging to study the nonlinear dynamics of the corti-

cal response to sensory and artificial stimuli. Specifically, pairs of stimuli, separated

by inter-stimulus intervals of various duration, were delivered either to the whiskers

on the face, or to the thalamic via electrical or optogenetic inputs. The cortical

response to pairs of whisker stimuli exhibited classical suppressive dynamics, con-

sistent with previous reports [173, 33, 15, 14, 197, 198]. Thalamic microstimulation

and optogenetic stimulation, however, produced an additional nonlinear dynamical

mode. For strong inputs, artificial stimuli generated suppressive responses, whereas

for sub-threshold inputs, the cortical response demonstrated profound facilitation.

The facilitation dynamics also contained a spatial component, resulting in a spatial

sharpening of the cortical response. Finally, the facilitation was observed for single

unit activity within VPM during optogenetic stimulation, suggesting that the mech-

anism was thalamic in origin.

Based on previous literature, there are three primary candidate mechanisms through

which the artificial stimuli likely recruited the additional nonlinear dynamics: 1) si-

multaneous activation of axons from the postero-medial (POM) nucleus in the thala-

mus, which has been associated with the thalamocortical augmenting response [33],

2) enhanced activation of the reticular thalamic (RT) nucleus through the extreme
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synchrony induced by artificial stimuli, resulting in thalamic bursts [76], or 3) pref-

erential activation of class II, facilitating synapses that extend directly from VPM to

layer 2/3 cells [190].

The thalamocortical augmenting response was originally described in 1943 [48],

but has more recently been studied in the rodent whisker system by Castro-alamancos

and Barry Connors [33]. The augmenting response is characterized by progressive

facilitation of the cortical response to thalamic microstimulation for interstimulus in-

tervals between 50 and 200 milliseconds, and has been shown to occur in the awake

animal [33]. The exact mechanism of the augmenting response is disputed, however,

with some pointing to cortical mechanism, while others propose the dynamics are

thalamic in origin. Principally, though, the augmenting response is believed to be a

product of bursting thalamocorecipient cells within layer 5 of cortex. In the rodent

vibrissa system, this has primarily been considered through stimulation of the POM

nucleus, which projects to layer 5 of cortex as a part of the paralemniscal system,

whereas VPM primarily projects to layer 4 (although recent evidence has demon-

strated direct projections from VPM to layer 5 [40]). Due to the close proximity of

POM and VPM, it is possible that thalamic microstimulation recruited the augment-

ing response by activating POM axons passing through/near VPM. However, given

the observance of facilitation in the VPM units and the facilitation caused by opto-

genetic stimuli, which are believed to stimulate axons to a lesser extent, the classical

augmenting response likely was not the mechanism of the facilitation.

More likely, the facilitation was due to the engagement of bursting mechanisms

within VPM. Bursting in the thalamus is caused by the recruitment of T-type calcium

channels in the thalamus [170]. When thalamic cells are hyperpolarized for a long

period of time (> 100ms), the calcium channels de-inactivate, allowing a large influx

of calcium during any subsequent depolarization. Calcium bursts are characterized

by multiple spikes occurring in a single cell with inter-spike intervals less than four
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milliseconds, immediately following an inter-spike interval greater than 100ms [164].

The time period of de-inactivation of calcium channels is consistent with the inter-

stimulus intervals (100-200ms) for which we observed facilitation. Also, we directly

observed an increase in bursting for VPM cells in the response to the second stimulus

of a facilitating pair. Finally, the spatial sharpening of the cortical response also

suggests a bursting mechanism in the thalamus. The large spatial spread in cortex in

response to a single supra-threshold electrical stimulus was likely due to the activation

of axons, as opposed to cell bodies, near the electrode tip in the VPM (as discussed in

Chapter 2) [83]. However, the facilitated response was spatially constrained and more

closely matched to the topographic electrode position in VPM. Activation of calcium

channels would reduce the threshold to stimulation of cell bodies, but would not

affect the threshold of axonal stimulation due to the prevalence of calcium channels

in the cell soma and proximal dendrites [214]. In this way, the second stimulus would

activate a greater proportion of cell bodies near the electrode tip, as opposed to

passing axons, and produce a cortical response with spatial spread more similar to

that of whisker stimuli.

Finally, direct synaptic connections from VPM to layer 2/3 have recently been

reported, with facilitation properties on a consistent timescale to the experimental

results we have observed here. Namely, for 10Hz stimuli delivered to VPM in vitro,

the post synaptic potential in the layer 2/3 neurons was facilitated [190]. This was in

contrast to the synaptic response in layer 4 neurons, which demonstrated suppression.

While this may have played a role in the facilitation, the observation of facilitation

in the VPM units again suggests a bursting mechanism.

Regardless of the exact mechanism, the facilitation dynamics were only recruited

by artificial stimuli. Any of the above mechanistic explanations derive from neural cir-

cuit properties that could have been similarly engaged by whisker stimuli, but were

not. In this way, the extra dynamical mode highlights the distinct engagement of
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neural circuits by artificial stimuli, much in the way of the different variability trends

in Chapter 2. More subtle differences in nonlinear dynamics have been observed in

the early sensory pathways, both experimentally [112] and behaviorally [119]. Lo-

gothetis et al found that the timescale of suppression was significantly longer for

thalamic microstimulation than visual stimulation, a finding born out in behavior as

Masse and Cook found that the timescale of suppression was longer for intracorti-

cal microstimulation than visual stimuli [112, 119]. The recruitment of suppression

was significantly different for downstream neural structures as well, as Logothetis

and colleagues used fMRI to track the nonlinear dynamics in response to thalamic

microstimulation across multiple stages of the visual pathway [112]. Drawing on the

modeling results in Chapter 2, it may be the case that the extreme synchrony induced

by artificial stimuli enhances the strength of feedforward inhibition within recurrent

neural circuits.

Whether due to the activation of axons or the extreme synchronization, the dis-

tinct dynamics for sensory and artificial stimuli reported here have implications for

the study of non-sensory neural circuits. In these circuits, “natural stimuli” are less

clearly defined (i.e. in the case of memory), thus artificial stimulation techniques are

often used to map the dynamics of circuits like the hippocampus [175] or pre-frontal

cortex [77]. Using artificial stimulation in this context could lead to misrepresenta-

tion of the neural dynamics that are important to normal function or characterize

pathological states.

Perhaps more directly, the nonlinear dynamics in response to artificial inputs

must be known in order to design encoding schemes to map constantly changing

sensory inputs into patterns of stimulation for sensory prostheses. The most success-

ful implementation of a sensory prosthesis, the cochlear implant, does not include

any nonlinear dynamics into the stimulation encoding scheme [201], and yet has

66



www.manaraa.com

demonstrated remarkable success [202]. However, the neural circuits of the periph-

eral nervous system are decidedly less nonlinear than those in the central nervous

system, likely one of the reasons why central nervous system sensory prostheses have

failed to date [19, 17]. Therefore, the nonlinear dynamics must be known in order

to design stimuli to generate functionally relevant, time-varying neural responses. In

this work, we characterized and quantified the spatiotemporal nonlinear dynamics

of a canonical neural circuit to sensory and artificial stimuli, but future work must

develop quantitative and predictive dynamical models to advance the field of sensory

prostheses.
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CHAPTER IV

SYSTEM IDENTIFICATION OF THE NONLINEAR

DYNAMICS IN THE CORTICAL RESPONSE TO

THALAMIC MICROSTIMULATION

This chapter was originally published as an article in the Journal of Neural Engineer-

ing and is presented with only minor stylistic changes:

Millard, DC, Wang, Q, Gollnick, CA, & Stanley, GB. System identification of the

nonlinaer dynamics in the thalamocortical circuit in response to patterned thalamic

microstimulatio in vivo. Journal of Neural Engineering, 10(6), 2013. [128]

Portions of this work were presented in poster form at the following conferences:

Millard, DC, Wang, Q, Gollnick, CA, & Stanley, GB. Optimization of patterned

thalamic microstimulation for control of cortical activation. Society for Neuroscience

Annual Meeting, Washington, DC, November 2011.

Millard, DC, Wang, & Stanley, GB. Nonlinear dynamical modeling of the cortical re-

sponse to thalamic microstimulation. Biomedical Engineering Society Annual Meet-

ing, Atlanta, GA, October 2012.

4.1 Introduction

Sensory prostheses seek to use electrical stimulation to deliver information to the

brain about the sensory environment when the native neural pathways have been

damaged due to trauma or disease. While peripheral sensory prostheses, like the

cochlear or retinal implants, have been successful [87, 202], attempts at delivering
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information directly to the central nervous system have proven difficult. Whether the

aim is to reproduce natural neural activity or merely to deliver discriminable inputs

to the brain, the advancement of sensory prostheses requires a greater understanding

of the mapping from electrical stimuli to neural response within complex circuits and

the resulting propagation along neural pathways.

Recent work has pushed towards recording population responses downstream of

the delivery of patterned microstimulation in-vivo [33, 93, 29, 38, 83, 112, 22, 200]. In

all but the simplest scenarios, the neural response to electrical stimulation is highly

nonlinear, ranging from paired stimulus facilitation in the thalamocortical augment-

ing response [48, 33] to paired stimulus suppression at the level of the cortex [93, 29].

Furthermore, the nonlinear effects of natural sensory stimuli and electrical stimuli

are behaviorally and electrophysiologically different, indicating that electrical stimuli

activate neural circuits in a manner distinct from the natural physiological recruit-

ment [112, 119]. In order to design patterns of stimulation to faithfully represent

ongoing changes in the sensory environment for prosthesis applications, particularly

in the central nervous system, we must develop predictive models of these dynamical

nonlinear mappings in-vivo. Here we perform nonlinear system identification within

the central nervous system, specifically using the thalamocortical circuit, to model

the system dynamics in response to patterns of microstimulation.

System identification has a long history of application in sensory neuroscience

for creating nonlinear dynamical models [98, 116, 88, 207]. Typically, system iden-

tification takes advantage of nonparametric model structures capable of estimating

complicated system dynamics with few assumptions; however, these types of models

often require a large amount of data to fit [118]. In-vivo experimental models are

typically limited in the amount of data that can be realistically collected during an

experimental session, often precluding the high-order modeling that is necessary to

adequately capture the complexity of the system. However, through a combination
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of non-parametric modeling and empirical observations of the system, it is possible

to constrain the model subspace, greatly reducing the number of parameters needed,

while only minimally restricting the generality of the model [132, 178].

Through both nonparametric and parametric system identification techniques, we

develop a model of the nonlinear system dynamics in the thalamocortical circuit in-

vivo. Specifically, using voltage sensitive dye imaging (VSDI) techniques, we recorded

the cortical layer 2/3 response to upstream microstimulation in the ventral postero-

medial (VPm) region of the thalamus in the anesthetized rat. The canonical network

architecture of the thalamocortical circuit [171], along with the extensive literature

on the anatomy of the rodent vibrissa system [206, 51], makes this an ideal model

system for studying the network level neural response to electrical stimuli. System-

atic probing of the input-output relationship enabled the development of a nonlinear

phenomenological model based upon experimental observations that is highly predic-

tive of the cortical response to patterns of thalamic microstimulation. The ultimate

structure of the model revealed complex interactions within a multi-stage architec-

ture composed of canonical facilitative and suppressive dynamics, and a sensitivity

to noise that mediates trial-by-trial bimodality in the facilitative/suppressive dynam-

ics. Finally, from simulations with the model, we suggest that electrical stimulation

activates local circuitry through linear recruitment, but that this activity propagates

in a highly nonlinear fashion to downstream targets. More generally, the nonlinear

dynamical model developed in this study informs future encoding schemes that map

sensory signals to patterns of microstimulation for sensory prosthesis implementation.

4.2 Methods

4.2.1 Experimental Preparation

The animal preparation was identical to that described in section 1.4, with VSDI

used to monitor the cortical response to sensory, electrical, and optical stimulation
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in vivo. The temporal evoluation of the VSDI signal, as measured through spatially

averaging within the principal cortical column, was used throughout this chapter.

4.2.2 Electrical Stimulation

A glass coated tungsten microelectrode (impedance = 1-2 M at 1kHz) was advanced

to the ventral posterio-medial (VPm) region of the thalamus using a precision mi-

crodrive (Knopf Instruments, Tujunga, CA). The principal vibrissa was determined

by manually deflecting individual whiskers and confirmed using the latency and spike

count of single unit recordings in response to controlled whisker deflection using a

piezo-electric actuator [196]. In the event that single unit recordings could not be

achieved, multi-unit activity was used.

Following electrophysiological determination of the electrode position and its as-

sociated principal vibrissa, the electrode was used to deliver microstimulation to the

surrounding tissue. The stimulus waveforms were designed using a digital stimulus

generator (WPI Inc, Sarasota, Florida) and delivered using a current controlled, op-

tically isolated stimulator (WPI Inc, Sarasota, Florida). Individual electrical stimuli

were charge-balanced, cathodal-first, biphasic waveforms of 200 microsecond duration

per phase. A diagram of the stimulus waveform is displayed in figure 4.1(a). More

complicated stimuli were generated through temporal patterns of this base stimulus

unit with varying amplitudes. Although we have recently shown a topographic dis-

placement of the spatial cortical response to symmetric and asymmetric waveforms of

thalamic microstimulation [195], we observed no difference in the dynamics presented

in this study between the two stimulus waveforms (data not shown).

Three different stimulation protocols were used in this study. A series of single

electrical stimulation pulses with varying amplitude between 10 and 100 microam-

peres was used to test the static nonlinearity of the system (shown in Figure 4.1(b),

discussed in the results section). The current range was chosen to elicit the full range
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of sub-threshold to maximal cortical responses. To sample the nonlinear dynam-

ics of the system, pairs of electrical stimulation pulses were delivered with varying

inter-stimulus intervals between 50 and 500 milliseconds. For the system identifica-

tion procedure, random impulse trains were generated, where the event times were

determined by a Poisson distribution and the intensities of the events were drawn

randomly from a set of current amplitudes (30, 40, 50, 60, 80, 100 microamperes), all

with equal probability. Throughout the remainder of the document, these stimuli will

be referred to as random amplitude Poisson (RAP) impulse trains, consistent with

previous literature [208]. In four experiments, twenty different random instances of

RAP impulse trains were used with a Poisson homogeneous rate of 10Hz, while the

remaining three experiments used thirty different random instances with a Poisson

homogeneous rate of 3Hz. The results were not qualitatively different using the two

different stimulus rates. While previous studies have used high frequency pulse trains

as the fundamental unit for stimulating the brain [165, 155, 112, 142], we treated each

single stimulus pulse as its own event. Given the inter-event intervals were generated

from a Poisson process, the RAP stimulus presented a wide bandwidth (up to 500Hz)

to the experimental system.

4.2.3 System Identification

Two different model structures were used in this study: a second order Volterra

series and a custom phenomenological model. Each model was fit using the cortical

response, r[n], averaged within the principal cortical column, to the RAP impulse

trains, s[n], where n are the discrete timepoints sampled by the VSD imaging for

a given trial of length T . A block diagram of the experimental system is shown in

figure 4.2(a). Each electrical stimulus was considered a discrete Dirac delta function

with amplitude in units of microamperes. The second order Volterra series was fit

according to the cross-correlation based methods of Wu and Sclabassi [208]. The
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Figure 4.1: Microstimulation of the thalamus produces a nonlinear cortical response.
(a) Top: By averaging within a single cortical column, we obtain a timecourse of cor-
tical activation with high signal to noise ratio. The tick represents the presentation
time of the stimulus, which is a symmetric biphasic current waveform. The height
of the ticks throughout the paper indicates the current amplitude of the stimulus.
Microstimulation elicited a characteristic timecourse in the cortical response (single
trials in gray, trial-averaged response in black). Bottom: When normalized by the
amplitude of the response, the timecourse was consistent across a wide range of stim-
ulus intensities and response amplitudes. (b) The amplitude of the cortical response
displayed a nonlinear relationship with the current intensity of the single electrical
stimulus. The currents used in (a) are color-coded in (b) for reference. (c) Microstim-
ulation of the thalamus engaged two sets of nonlinear dynamics. A strong electrical
stimulus suppressed the response to a second electrical stimulus, with the suppres-
sion decreasing for long inter-stimulus intervals. A weak electrical stimulus, however,
caused profound facilitation of the response to the second stimulus. This facilitation
principally occurs for inter-stimulus intervals of 100-200 milliseconds.
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parameters of the phenomenological model were fit simultaneously through a least

squares regression algorithm in MATLAB. Confidence intervals on the parameters

were estimated by fitting the models with shuffled versions of the stimuli, where each

instance of the RAP impulse train was randomly reassigned to a cortical response

generated by a different instance of the stimulus.

The models were cross-validated using the leave one out method [94]. The models

were fit using all but one instance of the RAP impulse train and then tested on the

remaining instance of the RAP impulse train stimulus. This procedure was then

repeated for all instances of the stimulus. Performance was measured as the percent

of variance accounted for (VAF) by the model:

V AF = 1−
∑

i (yi − ŷi)2∑
i (yi − ȳ)2

(10)

where yi is the experimental response and ŷi is the predicted response to the ith

stimulus of the RAP impulse train and ȳ is the mean experimental response across

all stimuli. The VAF in a given experiment was calculated as the median of the

VAF across the set of test stimuli. To compare the Volterra and phenomenological

models, the VAF was then averaged across experiments (N=7). The model parameters

displayed throughout the paper are the average across all test stimuli for a single

experiment and then across all animals (N=7). A VAF of 100% would indicate that

the model prediction exactly matches the timeseries of the cortical response. However,

due to noise in the biological signal, the variance that the models could realistically

be expected to explain was bounded below 100%. For instance, a single trial of

the cortical response predicts 85% of the variance in the mean cortical response,

indicating a degree of stochasticity that a deterministic model could not be expected

to account for. However, each of the models is affected identically, such that the

variance accounted for measure can be used to compare the two models.

74



www.manaraa.com

4.2.3.1 Volterra Model

The goal of this study was to identify the nonlinear system dynamics that govern

the cortical response to patterns of electrical stimulation delivered to the thalamus.

Traditionally, system identification has been performed using nonparametric black

box methods, such as Volterra kernel estimation, which have a long history in neuro-

science applications (for review see [118, 207]). A Volterra series model describes the

n-th order nonlinear dynamics of a system with input, s[n], and output, r[n], through

a series of kernel functions, k0, k1, . . . , kn, according to the following equation:

r[n] = k0 +
M−1∑
m=0

k1[m] · s[n−m]

+
M−1∑
m1=0

M−1∑
m2=0

k2[m1,m2] · s[n−m1] · s[n−m2] + · · ·
(11)

where M is the memory of system, indicating how far in the past that previous inputs

will still affect the output, and mi represent each time index of the VSDI signal (5ms),

such that a memory of 100 timepoints corresponds to 500ms. A diagram of the

Volterra series model is shown in figure 4.2(b). Here we used a second order Volterra

series that, with a memory of 100 timepoints, contained 5150 parameters. Many of

these parameters were not important descriptors of the system dynamics, but this

information was not available a priori. In this study the second order Volterra system

was estimated according to the methods of Wu and Sclabassi [208]. Briefly, a set of

RAP-kernels were orthogonalized with respect to the RAP stimulus, such that they

could be identified through cross-correlation techniques. These RAP kernels were

then mapped into the true Volterra kernels of the system. All kernels presented here

are the true Volterra kernels.

Extension to a third order Volterra system would require a prohibitively long data

record due to the extremely large number of additional parameters it would require.

There exist methods for parameterizing the Volterra kernels for more computationally
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and experimentally efficient estimation of higher order kernels. The most common

approach in neuroscience applications uses Laguerre polynomials as basis functions

for the kernels, providing support for high frequency content at short time lags and

exponentially vanishing support at long time lags [117, 175]. However, these approxi-

mations are only useful if the chosen basis set can adequately represent the structure

of the true Volterra kernels, which likely is not known a priori. These methods did

not perform better than the cross-correlation based approach for our data set (data

not shown), leading to the development of the phenomenological model.

4.2.3.2 Phenomenological Model

The phenomenological model used many fewer parameters by including specific ele-

ments into the model that were derived from experimental observations. First, the

temporal structure of the VSDI response to a single electrical stimulus was not af-

fected by the strength of the stimulus or the amplitude of the response, as shown in

figure 4.1(a). In this way, the experimental system in figure 4.2(a), with input s[n] and

output r[n], can be modeled as a nonlinear mapping of the discrete input followed by

a linear filter to convert the discrete inputs to the continuously varying VSDI output.

This is depicted in the top portion of figure 4.2(c), where the input, s[n], undergoes

a nonlinear mapping to the intermediate variable, s′[n], before passing through the

linear filter to produce the output, r[n]. This simplification is common for systems

classified as same response shape (SRS) systems, where only the amplitude of the

response is affected by the discrete inputs and system dynamics [98, 169, 178].

The model for the discrete nonlinear mapping was also derived from experimen-

tal observations. The system exhibited two different sets of nonlinear dynamics, as

illustrated by figure 4.1(c). For the high current intensity in the left portion of figure

4.1(c), the response to the second stimulus was suppressed relative to the response to

the first, and this suppression relaxed for long inter-stimulus intervals. For the low
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Figure 4.2: Nonlinear modeling architecture. (a) The goal of the study was to create
a nonlinear dynamical model of the response of the thalamocortical circuit to patterns
of thalamic microstimulation. A train of microstimulation pulses was delivered as the
input, while a continuously varying signal, generated by averaging within a single
cortical column, was used as the output. (b) A second order Volterra series model
was developed in an attempt to capture the dynamics of the system. The kernels of
the model mapped trains of discrete inputs to continuously varying signals. (c) Top:
The phenomenological model was developed according to experimental observations
described in Figure 4.1. The response of the system was similar in shape, regardless
of stimulus or response amplitude, allowing separation of the model into a nonlinear
mapping of discrete impulses followed by a linear filter. Middle: Further, two distinct
sets of dynamics were observed and directly incorporated into the model architecture.
Bottom: Each of the two stages within the model was comprised of a canonical
unit, in which the static and dynamic nonlinearity were independently modeled and
parameterized.
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current intensity in right portion of figure 4.1(c), the response to the second stimulus

was strongly facilitated relative to the response to the first, but only for interstimulus

intervals of 100-200 milliseconds.

These two sets of nonlinear dynamics were explicitly included into the structure

of the phenomenological model as a cascade, shown in the middle portion of figure

4.2(c). This was done for two reasons. First, the separate dynamics outlined in figure

4.1(c) were each second order, indicating that the total order of nonlinearity in the

system was at least third order. However, a serial cascade simplified the high order

nonlinear system into two second order systems, each with a simpler description of the

dynamics. Second, the cascade mirrors the multi-stage biology of the neural circuit

between the thalamus and layer 2/3 of cortex.

The architecture of the nonlinear mapping within each cascade was identical and

is shown diagrammatically in the bottom portion of figure 4.2(c) as a canonical unit.

The canonical model separated the static and dynamic nonlinearity within each stage.

The static nonlinearity was modeled as a sigmoidal function, F , with input argument,

x, and parameters, θ, according to (12) below and in line with the experimental

observations in figure 4.1(b):

F (x;θ) =
θ1

1 + exp −(x−θ2)
θ3

(12)

where θ1, θ2, and θ3 are the amplitude, threshold, and sensitivity of the sigmoid,

respectively. The output of the canonical unit, y[n], was equal to the output of

the sigmoidal function, F (x;θ). The dynamic nonlinearity was modeled through a

history term, h[n], that scaled the input of the canonical unit, u[n], before the static

nonlinearity, according to (13) below:

y[n] = F (u[n] · h[n];θ) (13)

In this way, the history term modified how the static nonlinearity acted on the
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input, such that when the history term was greater than one, the output was facili-

tated, and when the history term was less than one, the output was suppressed. The

history term in the standard phenomenological model was generated using feedback

according to (14):

h[n+ 1] = 1 +
M−1∑
m=0

k[m] · y[n−m] (14)

where y[n −m] gives the previous outputs within the memory, M , of the canonical

unit, and k[m] is a linear filter. The convolution between the previous output and

the linear filter was zero when there were no previous outputs within the memory

of the system. For this reason, a value of one was added to the convolution such

that the history term was equal to one when there had been no previous inputs or

outputs for the system and thus had no scaling effect on future inputs. In this way, a

positive result from the convolution creates a history term greater than one, leading

to facilitation, and a negative result from the convolution produces a history term

less than one, leading to suppression.

The static and dynamic nonlinearity were separated to allow for a high order

description of the static nonlinearity, while restricting the dynamic nonlinearity to

second order. The output of the first canonical unit was the input to the second

canonical unit. Finally, the output of the second canonical unit was passed through

a linear filter to convert the delta functions into a continuously varying signal. The

sigmoidal static nonlinearity functions had 3 parameters each, while the dynamical

filters were parameterized through a basis set composed of the first five Laguerre

polynomials [117]. The final linear filter that produced the characteristic shape of a

VSDI signal had a basis set composed of the first eight Laguerre polynomials. Thus,

the phenomenological model contained 24 parameters in total.

The standard phenomenological model described above was compared with a feed-

forward implementation of the model. Whereas the phenomenological model with
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feedback used the previous responses to implement the dynamic nonlinearity, the

feedforward model used the previous stimuli according to (15) below:

h[n+ 1] = 1 +
M−1∑
m=0

k[m] · u[n−m] (15)

Otherwise, the two implementations of the phenomenological model were identical.

The parameters were fit specifically for the feedforward model. A diagram of the

canonical unit for the feedforward architecture is shown in figure 4.5(d).

4.2.4 Extension of the phenomenological model to include space

The phenomenological model was extended spatially in an effort to model the entire

spatiotemporal cortical response measured using VSDI. In this way, the cortical re-

sponse was described by the set of r(i)[n], where i indicates the ith cortical column.

The objective was to minimize the mean squared error between the neural response,

r(i)[n], and the predicted neural response, r
(i)
θ [n], with model parameters θ and across

all i:

arg min
θ

32∑
i=1

N∑
n=1

(r(i)[n]− r̂(i)θ [n])2 (16)

With 24 parameters required to fit a single instance of the phenomenological

model, a total of 768 parameters would need to be estimated to fit the phenomeno-

logical model for each of the individual cortical column outputs. Instead, we employed

a point spread function, A(x, y;φ), modeled as a two dimensional Gaussian function

that mapped the output of the phenomenological model into an image. The Gaussian

function was defined by the parameters φ, where φ1 and φ2 determine the center of

mass of the Gaussian in the two dimensional image, φ3 and φ4 give the width of the

Gaussian along the major and minor axis, respectively, and φ5 represents the angular

orientation of the major and minor axes with respect to the x and y axes of the image,

and given by the following equation:
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A(x, y;φ) = exp(−(a · (x− φ1)
2 + b · (x− φ1) · (y − φ2) + c · (y − φ2)

2)) (17)

where

a =
cosφ5

2

2 · φ2
3

+
sinφ5

2

2 · φ2
4

(18)

b =
− sin 2 · φ5

2

4 · φ2
3

+
sin 2 · φ5

2

4 · φ2
4

(19)

c =
sinφ5

2

2 · φ2
3

+
cosφ5

2

2 · φ2
4

(20)

The point spread function simplified the model in that the phenomenological

model only needed to be fit for a single cortical column and then the point spread func-

tion determined the relative activation levels for all cortical columns. This reduced

the number of required parameters to 29, with 24 corresponding to the phenomenolog-

ical model of a single cortical column and 5 parameters for the point spread function.

Ultimately, the parameters for the model were determined using the following aug-

mentation of the objective function in (21):

arg min
θ

32∑
i=1

N∑
n=1

(r(i)[n]− r̂θ[n])2 (21)

where xi and yi are the coordinates for the center of the ith cortical column and r̂θ[n]

is the predicted response of the principal cortical column. The above optimization

was performed for parameters θ and φ both serially and simultaneously with identical

results.

4.2.5 Model Simulations

The models were fit on input-output response data that have been averaged across

trials and thus would only be expected to predict trial-averaged responses. However,
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to simulate single trial responses from the deterministic phenomenological model,

Gaussian white noise was injected at the output of the first and second stages. The

variance of the injected noise for the second stage was tuned to reproduce the variance

of the background noise in the VSDI signal. The variance of the injected noise in the

first stage was scaled according to the relative amplitudes of the static nonlinearity

in the first and second stage, such that the noise inputs in the two stages were

equally weighted. The simulations were performed with the standard feedback model

presented in figures 4.2(c) and 4.3, and also the feedforward implementation of the

model.

4.3 Results

In this study, we created a phenomenological nonlinear dynamical model of the cor-

tical response to patterns of microstimulation in the thalamus. We compared this

model to a non-parametric model fit with traditional system identification techniques

and derived predictions about the circuit level activation caused by electrical micros-

timulation. Finally, we extended the phenomenological model to capture the spatial

properties of the cortical response.

4.3.1 The cortical response to thalamic microstimulation is highly non-
linear

All experiments utilized in-vivo voltage sensitive dye imaging (VSDI) of layer 2/3 in

the whisker representation of the primary somatosensory cortex with electrical mi-

crostimulation delivered to the topologically matched ventral postero-medial (VPm)

portion of the thalamus in the anesthetized rodent, as described earlier. For the pur-

poses of this study, we averaged the VSDI response spatially within the area outlined

by the cortical column topologically matched to the position of the electrode in tha-

lamus, as verified by electrophysiological recordings. By averaging within the cortical

column, we obtained a high signal to noise ratio for single trials, as shown in figure
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4.1(a) where the gray traces are the single trials and the mean across trials is given by

the black trace. The response in cortex over time exhibited a consistent trajectory for

a wide range of stimulus intensities and response amplitudes. This is illustrated by the

example in figure 4.1(a) by normalizing the response to three different supra-threshold

current intensities, such that the temporal profile of activation was qualitatively sim-

ilar across the stimulus range. While the temporal response shape was consistent,

suggesting a simple linear filter as a model, the response amplitude demonstrated a

nonlinear relationship with stimulus intensity. Figure 4.1(b) shows an example of the

nonlinear relationship, which was well approximated by a sigmoidal function. This

observation, along with previous literature, suggests a nonlinear projection from the

thalamus to cortex for thalamic microstimulation.

Pairs of electrical stimuli were then delivered to the thalamus with varying current

intensity and varying inter-stimulus interval to sample the dynamics of the system.

Figure 4.1(c) shows the response to pairs of stimuli with high (left) and low (right)

current amplitudes. For the high current intensity in the left portion of figure 4.1(c),

the response to the second stimulus was suppressed relative to the response to the

first, and this suppression relaxed for long inter-stimulus intervals. For the low cur-

rent intensity in right portion figure 4.1(c), the response to the second stimulus was

strongly facilitated relative to the response to the first, but only for interstimulus

intervals of 100-200 milliseconds. This observation alone points to dynamics higher

than second order. For a second order system, the nonlinear contribution between

two pairs of stimuli will have the same shape, with only the amplitude scaled by the

stimulus intensity. Here two different sets of second order dynamics were observed:

suppression for high current intensities and facilitation for low current intensities with

an inter-stimulus interval between 100 and 200 milliseconds.
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4.3.2 Development of a phenomenological model based on experimental
observations

We devised a phenomenological model using the experimental observations described

above. Two stages with identical architecture were used in series, with each stage

being a modified version of models used previously to study synaptic physiology

[169, 178]. The model is shown diagrammatically in figure 4.2(c) and the details are

described in the methods section. Briefly, the model implemented a cascade approach

with multiple elements in series. The initial portion of the model was a nonlinear

mapping of the discrete stimulus, and the final portion of the model transforms the

impulses from the stimulus into a continuous VSD signal. This separation was based

on the observation that the VSDI temporal response exhibited a consistent shape for

a wide range of current intensities and response amplitudes, as in figure 4.1(a). The

nonlinear dynamical mapping contained two stages because of the two distinct sets of

dynamics observed in the figure 4.1(c). Each stage consisted of a static nonlinearity,

modeled as a sigmoid function as in figure 4.1(b), and a history term that scaled

the input to the static nonlinearity (see Methods). The history term was created by

feeding back the output from the static nonlinearity through a linear filter and adding

one. In this way, the history term only scaled the input when previous stimuli had

occurred within the memory of the system. The architecture was the same for the

second stage of the model, with the output of the first stage being the input into the

second.

Each stage was initialized with the same linear feedback filter and all of the pa-

rameters were fit simultaneously. In every case, although not constrained to do so, the

first stage filter captured the time course of the facilitative dynamics and the second

stage captured the time course of the suppressive dynamics. The average linear filter,

first stage dynamical filter, and second stage dynamical filter are shown in figures

4.3(a), 4.3(b), and 4.3(c), respectively. The actual and predicted responses for an
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example train of stimuli are shown in figure 4.3(d), with the predicted response of

the Volterra model presented in figure 4.3(e) for comparison purposes. The responses

labeled with an asterisk illustrate typical examples of the primary improvement of

the phenomenological model over the Volterra model. The Volterra model was not

able to capture the facilitative dynamics causing significant under-predictions of the

response, whereas these dynamics were explicitly built into the phenomenological

model and resulted in fewer under-prediction errors. The variance accounted for by

the phenomenological model was 58 +/- 12% across animals, whereas the second or-

der Volterra model accounted for 28 18% of the variance in the cortical response. The

improvement of the phenomenological model over the Volterra model was statistically

significant (p = 0.002, N=7, two-sided paired Students t-test).

4.3.3 Error residuals illustrate the improved performance of the phe-
nomenological model

The mechanism for the increased performance of the phenomenological model is illus-

trated by examining the residuals. In the top portion of figure 4.4, the error residuals

from the Volterra model are presented. In figure 4.4(a), the actual response was

plotted against the predicted response for each stimulus within the Poisson train. At

low values of the actual response, the Volterra model consistently over-predicted the

response, whereas at high values of actual response, the model under-predicted the

response. The probability distribution of the errors was calculated by subtracting the

actual from the predicted, as in the figure 4.4(a) inset and figure 4.4(b). The distri-

bution has a non-zero median and heavy tails, especially towards under-prediction.

By examining the heavy tails we can determine if there was a bias towards the model

incorrectly predicting certain features of the stimulus. In comparing the prevalence

of over-prediction vs. under-prediction as a function of the interstimulus intervals in

the stimulus, we found that the large errors made by the Volterra model were pre-

dominantly under-predictions for stimuli that occur within 50-200 milliseconds of a
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Figure 4.3: Phenomenological model based on experimental observations accurately
predicted the cortical response to patterned microstimulation. The average (a) linear
kernel, (b) first stage feedback kernel, and (c) second stage feedback kernel of the
phenomenological model fit on Poisson train stimuli and VSDI response data (N=7).
In each case, the first stage kernel implemented the facilitation dynamics and the
second stage implemented the suppression dynamics. (d) An example of the per-
formance of the phenomenological model (blue), with the actual response shown in
black. (e) An example of the second order Volterra model performance (green), with
the actual response shown in black. In (d) and (e), the height of the ticks indicates
the current intensity and the asterisks mark stimuli for which the Volterra model
severely under-predicted the response. The phenomenological model performed bet-
ter for these responses.
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previous stimulus. These particular errors indicate a failure of the Volterra model to

account for the facilitation dynamics presented in the right portion of figure 4.1(c).

The skewness of the error distribution was also used to quantify the bias of under-

prediction vs. over-prediction. The skewness of the error distribution was -0.77 0.44,

indicating a significantly heavy left tail for under-prediction (p = 0.003, N=7, two-

sided Students t-test).

The error residuals for the phenomenological model are presented in the lower

panels of figure 5. In figure 4.4(d), the residuals were closer to the unity line, but

still exhibited trends of over-prediction for weak responses and under-prediction for

strong responses. However, the collapsed error distribution showed no systematic

bias in the residuals towards over-prediction or under-prediction (figure 4.4(e)) and

fewer large errors overall due to the increased variance accounted for by the model.

Furthermore, there was no systematic bias in the residuals as a function of interstim-

ulus interval. The skewness of the error distribution was -0.02 0.79, indicating a

symmetric distribution, and was not statistically significant from a lack of skewness

(p = 0.94, N=7, two-sided Students t-test). Furthermore, the lack of skewness was

statistically different from the skewness for the Volterra model (p = 0.05, N=7, two-

sided paired Students t-test). By including experimental observations explicitly in

the phenomenological model, the predictive capabilities were significantly increased

while using many fewer parameters. For the remainder of the study, only the phe-

nomenological model was considered.

4.3.4 Trial to trial variability and feedback

While the model described above was highly predictive, it is also purely deterministic,

such that it will always predict the same response for the same stimulus. In this way,

it cannot strictly reproduce the trial to trial variability in the cortical response. Here

we explore the ability of the model to account for single trial response properties
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Figure 4.4: Phenomenological model improved error residuals compared to the
Volterra model. (a) Error residuals for the second order Volterra model fit via cross-
correlation. Each data point is the response to a single stimulus in the RAP stimulus
train. (b) The residual distribution had a heavy tail towards under-prediction. (c)
The responses were systematically under-predicted for stimuli separated in time by
50-250 milliseconds. (d) Error residuals for the phenomenological model. (e) The
residual distribution shows few large errors (indicated by the gray regions) and no
bias towards under-prediction or over-prediction. (f) The responses were not system-
atically under-predicted or over-predicted for any interstimulus intervals.
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when noise is added to the system through simulation. While the model was only

designed to accurately predict the mean cortical response to a pattern of electrical

stimuli, we will show that small changes in the input can lead to large changes in

the output experimentally and that the architecture of the model is ideally suited to

capture these dynamics on a trial by trial basis.

Two sets of nonlinear dynamics were observed in the trial averaged responses in

figure 4.1(c), leading to the explicit inclusion of two stages in the model. Although

the dynamics tended to be either suppressive or facilitative, there existed a range

of currents for which the occurrence of facilitation or suppression varied on a trial

by trial basis. Figure 4.5(a) plots the single trial responses to an initial stimulus

against the responses to a second stimulus delivered 150 milliseconds later, with

the different colors indicating varying current intensity and the unity line in gray.

There are three clear clusters within this plot. At very low current intensities, no

response to either stimulus was observed. For intermediate currents, the response

to the second stimulus was facilitated relative to the first, creating a cluster in the

upper left portion of the axes. At very high current intensities, the response to the

second stimulus was suppressed relative to the first, creating a cluster in the lower

right portion of the axes. Interestingly, for a select range of current intensities, the

occurrence of facilitation and suppression varied on a trial by trial basis. The 60

microampere current intensity in this example spanned the regime connecting the

facilitation cluster (upper left) to the suppression cluster (lower right). Plotting the

single trial data in this way creates a characteristic pattern, extending vertically from

the origin to the facilitation cluster and then traversing across the unity line to the

suppression cluster. This characteristic pattern was consistent across animals. Of

the ten paired pulse experiments, one data set showed weak facilitation and one

showed no facilitation at all, while the remaining eight showed consistent and robust

facilitation. For two of the ten paired stimulus experiments there was a systematic

89



www.manaraa.com

shift from suppressive responses to facilitative responses for the threshold current as

the experiment went on; however, this trend was not observed in the other data sets.

It should be noted that in these examples, sub-threshold and supra-threshold currents

consistently produced facilitative and suppressive responses, respectively, throughout

the duration of the experiment. This suggests that the threshold current amplitude is

likely a function of the underlying brain state, which was not measured systematically

in this study (see discussion).

Examining the trial to trial variability of facilitation and suppression, it is clear

that the covariance of the response to the first stimulus and the second stimulus

changes dramatically depending on the location within the axes. For very small

currents, the individual trials cluster around the origin and have little covariance,

creating a circular cloud of points. This is also the case for the facilitative cluster

in the top left (30 microampere) and the suppressive cluster in the bottom right (80

microampere). However, for the 40 microampere stimulus, exhibiting roughly half

facilitation and half suppression, there is a strong negative correlation between the

response to the first stimulus and the response to the second stimulus. Figure 4.5(b)

plots the covariance, σ1,2, between the first and second response as a function of

current. For sub-threshold and supra-threshold stimulus intensities, σ1,2 was small.

For the threshold current, the responses to the first and second stimulus strongly

co-varied, such that knowledge of the response to the first stimulus was a strong

predictor of the magnitude of the response to the second stimulus. This phenomenon

was consistent across animals, with the average data presented in figure 4.5(c).

The high variability, σ2
1, of the response to a threshold stimulus and the strong

covariance, σ1,2, of the response to a subsequent stimulus indicate the presence of a

feedback element within the neural circuit. The phenomenological model presented

in this study contains feedback elements to implement the dynamic nonlinearity of

the response. Given this, we sought to determine if the phenomenological model,
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Figure 4.5: Phenomenological model with feedback reproduced single trial variability
in facilitation and suppression. (a) The response to the second stimulus (ISI = 150ms)
is plotted against the response to the first stimulus for experimental data. The color of
each point indicates the current intensity in units of microamperes. The unity line is
shown in gray. (b) The trial by trial covariance in the response to the two stimuli was
calculated for each stimulus intensity. At sub-threshold and supra-threshold currents,
the covariance between the first and second response was low. At a threshold current,
there was a strong negative covariance between the first and second response. (c) The
negative covariance at the threshold current was consistent across animals. (d) The
phenomenological model was used to simulate an identical experiment. The simulated
data was created by injecting noise into the model at the output of the first and
second stages during presentation of stimuli. A feedback model (same as in Figure 5,
displayed in bottom-left of the panel) and a feedforward model (fit specifically for this
analysis, displayed in the bottom-right of the panel) were used. Both models utilized
a two-stage model architecture, where each stage consisted of a canonical unit. The
canonical unit for the feedback (left) and feedforward (right) model are shown in
this panel. (e) The feedback model reproduced the strong negative covariance at the
threshold current and recovers for supra-threshold currents, and was not significantly
different from the experimental data in (c) (p = 0.89, N=7, two-sided paired Students
t-test). (f) The feedforward model did not reproduce the negative covariance for
threshold currents, and the difference from the experimental data was statistically
significant (p = 0.003, N=7, two-sided paired Students t-test).
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which was built entirely on averaged data, could reproduce single trial response prop-

erties. By injecting noise at the output of each stage in the model, the relationship

in Figure 4.5(a) was simulated and the covariance as a function of current was ex-

tracted. The average sub-threshold, threshold, and supra-threshold σ1,2 are presented

in figure 4.5(e), demonstrating that the phenomenological model can reproduce the

strong negative covariance observed experimentally for the responses to two threshold

stimuli. However, when the phenomenological model was re-fit using a feedforward

architecture (illustrated in the bottom-right portion of figure 4.5(d) and described

in the methods), the negative covariance at the threshold current intensity was not

observed (figure 4.5(f)). The feedforward model was implemented in a two-stage ar-

chitecture in the same way as the feedback model described in the previous sections.

Only the structure of the canonical units was different, with the feedforward model

using the previous inputs to the system to model the dynamics, as opposed to the

feedback model that uses previous outputs to model the dynamics.

These simulations indicate that the feedback architecture within the model is

important for producing the experimentally observed trial-by-trial variability. How-

ever, the result could also be due to the specific parameters fit in the feedback and

feedforward cases. As a control, the dynamical filters and static nonlinearities from

the feedforward model were implemented in the feedback architecture and the strong

covariance, σ1,2,was still not reproduced (data not shown). Vice versa, when the

parameters from the feedback model were implemented in the feedforward architec-

ture, half of the covariance was recovered as compared to the feedback model. This

indicates that feedback is necessary, but not sufficient, for creating the covariance

observed experimentally, pointing towards a role for either the static nonlinearities or

the dynamical filters.
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4.3.5 Activity propagation through electrical microstimulation

The dynamical filters did not vary significantly across the feedforward and feedback

models in the first or second stage, as shown in figure 4.6(a) and 4.6(b), respectively,

nor did the overall static nonlinearity differ in figure 4.6(c). But, while the overall

static nonlinearities were similar, the individual static nonlinearities within each of

the two stages were dramatically different. For the first stage, shown in figure 4.6(d),

the feedback model was very insensitive to the current of the input, modeled as a

sigmoid function elongated along the horizontal, whereas the feedforward model was

moderately sensitive. In the second stage, depicted in figure 4.6(e), the feedback

model was highly sensitive to current intensity, modeled as a sigmoid function com-

pressed along the horizontal, whereas the feedforward model was again moderately

sensitive. These model parameters were consistent across animals, as shown in figure

4.6(f).

Due to the high sensitivity of the second stage in the feedback model, small per-

turbations from the noise caused large changes in the output of the model near the

threshold current leading to a high response variability, σ2
1. Meanwhile, the highly

variable response was fed back into the model and augmented the response to sub-

sequent stimuli resulting in a high σ1,2 value. The moderately sensitive stages of the

feedforward model were more robust to noise and thus did not exhibit high σ2
1 at

the threshold current, and without feedback the model could not account for σ1,2. In

summary, the relative sensitivity in the static nonlinearity of each stage dramatically

alters the propagation of activation through a cascade system with feedback. Mean-

while, the similarity of the phenomenological model architecture and the anatomy and

physiology of the thalamocortical circuit maps the results of this section to general

predictions about information propagation in neural circuits (see discussion).
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Figure 4.6: Model parameters predict linear local response properties, but nonlinear
propagation of activity. (a) The average first stage kernel from the phenomenologi-
cal model fit with feedback (red) and feedforward (blue) dynamics. (b) The average
second stage kernel. (c) An example of the full static nonlinearity created by com-
bining both stages. (d) and (e) The static nonlinearity at the first and second stages,
respectively, for the feedback and feedforward models. (f) The average sensitivity
across animals (N=7) is distinctly different for the feedback and feedforward models.
The feedback model was weakly sensitive in the first stage and highly sensitive in the
second stage. The feedforward model was moderately sensitive in both stages.
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4.3.6 Linear point spread function captures spatial spread in cortex

The phenomenological model was extended to capture the spatial properties of the

cortical response to patterns of thalamic microstimulation. In the previous sections,

the VSDI signal was discretized according to the anatomical map of the cortical

columns, and only the signal from the principal cortical column was used to fit the

phenomenological model. The phenomenological model performed equally well for the

principal cortical column and adjacent cortical columns. However, fitting an instance

of the model for each cortical column would require a large number of parameters,

while ignoring the correlation structure of the spatial cortical response. As a first

order approximation, we appended a point spread function, A(x, y;φ), to the output

of the phenomenological model, as in figure 4.7(a), mapping a scaled version of the

timeseries response from the principal cortical column to the entire set of cortical

columns within the barrel cortex. The details of the point spread function (PSF)

are described in the methods. Briefly, the PSF was modeled as a two dimensional

Gaussian function, with parameters φ describing the center of mass, spread along

the major and minor axis, and orientation with respect to the coordinate axis of the

VSDI images. The resulting PSF was identical whether fit simultaneously with, or

immediately following, the identification of the phenomenological model.

Figure 4.7(b) presents an example of the actual and predicted cortical response to

a train of electrical stimuli for the principal cortical column (top, blue) and a distant

cortical column (bottom, red). The PSF function accurately maps the output of the

phenomenological model to each of the cortical columns. The total variance in the

response accounted for by the spatial model, across all cortical columns, was 45+/-

8% (N=7). The PSF linearly maps the output of the phenomenological model to the

various cortical columns. To assess the validity of this assumption, we analyzed the

relative response of the primary and adjacent cortical column for neighboring cortical

columns (AW, black data points) and a distant cortical column (DW, gray data
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points) in figure 4.7(c). The relative locations of the cortical columns are shown in the

left portion of figure 4.7(c), with the actual cortical response at the top and the PSF

at the bottom. The white contour indicates the primary cortical column, the black

contours demarcate the eight nearest neighbor cortical columns, and the gray contour

represents the distant cortical column. Each point on the scatterplot in the right

portion of figure 4.7(c) came from the peak cortical response to each stimulus in the

RAP impulse train used to the fit the model, while the red lines represent the relative

response amplitudes defined by the PSF. For the entire range of cortical responses,

and for adjacent cortical columns near and far, the linear approximation of the relative

response magnitudes in the primary and adjacent cortical columns effectively captured

the experimentally observed relationship for trial averaged responses.

4.4 Discussion

Here we have demonstrated a phenomenological model capable of accurately pre-

dicting the response of the thalamocortical circuit to temporal patterns of thalamic

stimulation in-vivo. By explicitly including nonlinear elements modeled after experi-

mental observations, such as the combination of facilitative and suppressive dynamics,

into the model architecture, we significantly increased performance with respect to the

Volterra series model architecture while using many fewer parameters. Additionally,

although the model was fit using trial-averaged data, it was able to reproduce single

trial response properties observed experimentally, lending credence to the physiologi-

cal significance of the model architecture. Finally, from these single trial simulations,

we predict that electrical microstimulation activates neurons in its local environment

through linear recruitment, but that this activity propagates to downstream struc-

tures in a highly nonlinear manner.

The models in this study were fit using input-output data from the thalamocortical
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Figure 4.7: Extension of phenomenological model captures spatial spread. (a) A
linear point spread function, modeled as a two dimensional Gaussian, was used to
extend the model spatially across all cortical columns. (b) The spatial extension to
the model captured the dynamics for the principal cortical column as well as distant
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circuit. The input was a train of symmetric biphasic electrical stimuli, Poisson-

distributed in time and uniformly varying in amplitude, while the output was the

spatially averaged cortical response as measured by voltage sensitive dye imaging.

Due to the light scattering of the tissue, voltage sensitive dye imaging principally

measures the activity in the superficial layers of cortex [73]. The change in fluorescence

of the voltage sensitive dye increases linearly as a function of membrane potential,

but the imaging of the signal is too slow to resolve individual action potentials,

restricting the interpretation of the signal to sub-threshold activation [72]. Even

though the absolute amplitude of the VSDI response in layer 2/3, and the related

probability of action potential generation, is known to be strongly modulated by brain

state [151], the spatial distribution of sub-threshold activation in layer 2/3 during the

onset of activation is likely highly correlated with the supra-threshold activity in layer

4 of cortex [152]. All details considered, VSDI provides a high spatial and temporal

measure of the cortical response.

Both models were fit using the same input-output data, but the philosophy and

architecture of each was very different. The Volterra model is an example of a black

box model, which requires little previous information about the system due to its

flexibility, making it an ideal starting point for system modeling. The incredible

flexibility of a black box model, however, requires a large number of parameters, and

it is difficult to determine which will be important a priori. Also, in order to fit a

large numbers of parameters, a large amount of data is needed. For these reasons,

we explicitly included certain elements into the phenomenological model, increasing

the order of nonlinearity in the model to a degree greater than could be estimated

with a Volterra series given the data and time limitations. By effectively fitting

the model with small amounts of data, we open the possibility of pseudo real time

model construction and experimentation and potentially avoid the slow timescale

non-stationarities that may exist in an in-vivo anesthetized biological preparation.
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The structure of the phenomenological model invites physiological interpretations

due to its unique structure. The observation of two distinct second order dynamics

motivated the two-stage architecture. Two sets of second order dynamics in series

would imply that a fourth order Volterra series may have captured the dynamics of the

system. However, the intentional separation of the dynamics into two stages allowed

the dynamics to be described in a simpler form. From this, we would hypothesize

that the distinct dynamics are carried out by different elements of the neural circuit,

and further that these elements may be acting in series. The model parameters

consistently show the facilitation dynamics occurring in the first stage, while the

second stage employs the suppression dynamics. As the two-stage model mirrors

the disynaptic pathway from the thalamus to layer 2/3 of cortex, the model would

predict that the facilitation dynamics occur upstream of the suppression dynamics

within the neural circuitry. The suppression dynamics can likely be accounted for

by recurrent inhibition within the cortex [93], and the long timescale of inhibition

implicates the involvement of GABA-B receptors [27]. With facilitation occurring

before suppression in the model, we speculate that the facilitation is sub-cortical in

origin. This is in agreement with literature describing the facilitation of successive

stimuli termed the thalamocortical augmenting response, which acts through thalamic

and cortical structures [48, 33, 8]. The timescale of facilitation is also consistent with

the timescale of calcium T-channel mediated bursts in the thalamus [114].

A separate static nonlinearity was included within each stage of the model as well

and might be interpreted as the transformation across synapses within the thalamo-

cortical circuit. In this way, the static nonlinearity of the first stage would represent

the transformation of electrical current into the number of activated thalamic cells.

Similarly, the static nonlinearity of the second stage would represent the transfor-

mation of the number of activated thalamic cells to the number of activated cortical
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cells. While feedback within the model was found to contribute to the single trial re-

sponse properties, it was the relative sensitivities of the first and second stage static

nonlinearities that were most important. Specifically, the first stage was found to

be linear with respect to current intensity and exhibit a shallow slope, such that

small amounts of noise produced small fluctuations in the output of the first stage.

This leads to the prediction that the number of neurons activated in the immediate

environment around the electrode are recruited in a nearly linear relationship with

the stimulus intensity, and that this recruitment is robust to random fluctuations in

membrane potential of the neurons. This interpretation is supported biophysically in

that the radius of activation from the electrode tip increases as the square root of the

current intensity, while the number of neurons within that sphere increases with the

cube of the radius, leading to a weakly nonlinear relationship between the number of

neurons activated and the current intensity [183]. Further, when stimulating a fiber

bundle, the relationship between current intensity and the number of axons activated

becomes linear [210]. Recent work is also in agreement, as Histed et al, report a linear

increase in the number of cells activated by increasing microstimulation intensity as

measured by calcium imaging of the cortical population [83].

Meanwhile, the output of the second stage, or number of cortical cells activated,

was found to be quite sensitive to the output of the first stage, which is interpreted as

the number of activated thalamic cells. We hypothesize that the cortical activation

is highly sensitive to the number of activated thalamic cells due to the high conver-

gence and divergence of the thalamocortical circuit [171] and the extreme synchrony

with which electrical stimulation recruits the thalamic neurons [191, 168]. This is

supported by previous work demonstrating that synchronous activation of thalamic

neurons drives downstream neural activation in a highly nonlinear manner [2]. The

nonlinearity discussed above refers to the static nonlinear relationship between the
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neural response and the stimulus intensity; however, we believe this phenomenon ex-

tends to the dynamic nonlinearity. The extreme synchrony of the activation caused

by electrical stimulation may explain how electrical stimulation and natural sensory

stimulation could recruit distinct nonlinear responses [119].

This hypothesis applies directly to the implementation of sensory prostheses, the

goal of which is to transduce signals from the sensory environment into patterns of

stimulation that create surrogate sensory signals in the peripheral or central nervous

system. Ideally a sensory neuroprosthesis would generate neural responses similar to

those created by natural stimuli; however, this may prove problematic if electrical

microstimulation engages circuits in a fundamentally different manner as compared

to natural stimuli. Given this, some degree of plasticity, ranging from interpreting

unnatural patterns of electrical stimulation [56] to grasping new coordinate transfor-

mations with cross-modal sensory substitution [6, 7], will be required for the successful

implementation of a sensory prosthesis. At a minimum, a sensory prosthesis must be

capable of producing perceptually distinct neural activations that the patient could

learn to interpret functionally. This motivates the mapping of electrical stimuli to

downstream neural responses, such that patterns of stimuli can be designed, in real

time, with the high spatial resolution and fast timescales that will be needed in the

limit of faithfully representing the sensory experience [64]. While implementation of

this system identification approach may be possible in a human patient, the immedi-

ate impact lies in quantitatively describing the neural response generated by patterns

of electrical stimulation within sensory pathways of the central nervous system. The

development of the cochlear implant followed a similar trajectory, with many early

animal studies characterizing the encoding of electrical stimuli into neural activity

[125, 78] to aid in the development of encoding algorithms for early cochlear implants.

This work forms an initial step in replicating the cochlear implant development tra-

jectory in the central nervous system.
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In addition to the system identification approaches described here, future inclu-

sion of both recording and stimulating electrodes in prosthetic applications will enable

control-theoretic approaches to optimize and control the neural activation, and re-

sulting percept, induced by surrogate sensory signals [110, 44]. In order to operate

in real-time, the model must contain a description of the stochasticity of the system.

While the model presented in this study reproduces single trial response properties,

it lacks the ability to predict single trial responses. A feedback signal, such as the

electroencephalogram or local field potential, would be needed to determine the in-

stantaneous state of the circuit for improving single-trial predictions [22], in so far

as the stochasticity in the single trial responses derive from an underlying state vari-

able [152]. Additionally, the underlying uncertainty could be built directly into the

model parameters in the context of a robust control framework. Importantly, the

pathological circuit may function differently from normal [46], further emphasizing

the importance of closed loop stimulation and recording paradigms.

Precise delivery of information to the brain requires control of the spatial and

temporal properties of neural activation. In this study, we modeled the spatial corti-

cal response through a linear point spread function. This simple, linear spatial model

performed nearly as well for the entire barrel cortex as the non-spatial phenomeno-

logical model did for a single cortical column, indicating the point spread function is

a good approximation of the spatial cortical response. This conclusion is consistent

with previous studies that coined the term cortical point spread function, referring to

the region of cortical space activated by a point source stimulus [73, 45]). The point

spread function was effective and efficient in our modeling study, yet a significant

portion of the variance in the spatial signal remained unexplained. Future work is

needed to determine if the spatial and temporal response properties in cortex are

separable or co-dependent in order to control the cortical response with high spatial
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and temporal resolution. There exists some evidence from the literature the pat-

terned stimuli can dynamically shape the spatial properties of the cortical response.

Brumberg et al demonstrate a spatial sharpening of the cortical response in the barrel

cortex to a single whisker deflection when a noise stimulus is applied to the adjacent

whiskers [23]. More generally, adapting stimuli are thought to dynamically shape

the cortical response, and have been shown to increase spatial acuity in a two-point

discrimination task in humans [182]. While space-time separability allows for simpler

modeling of the cortical response, co-dependence, if fully understood, could enable

complex shaping of the spatiotemporal cortical response and consequent perception.

In this study, through the use of system identification techniques, we have devel-

oped a highly predictive phenomenological model of the cortical response to patterns

of thalamic microstimulation. Simulations suggest that electrical stimulation may re-

cruit neighboring neurons in a linear manner, but that the resulting activity projects

to downstream structures through a highly nonlinear relationship. Future work will

extend to a spatiotemporal model of the cortical response and the application of the

model as a stimulus design tool for controlling the cortical response. More generally,

this framework describes the nonlinear mapping from electrical stimulation to neural

response in order to transform environmental cues into surrogate sensory signals at

high spatial resolution and fast timescales for the advancement of central nervous

system sensory prostheses.
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CHAPTER V

DESIGN OF SURROGATE INPUTS TO IMPROVE

DISCRIMINABILITY OF THE DOWNSTREAM

CORTICAL RESPONSE

Portions of this chapter were originally published as an article in the Journal of Neural

Engineering:

Wang, Q, Millard, DC, Zheng, HJV, & Stanley, GB. Voltage-sensitive dye imaging

reveals improved topographic activation of cortex in response to manipulation of

microstimulation parameters. Journal of Neural Engineering, 9(5), 2012. [195]

Portions of this chapter were presented in poster form at the following conferences:

Wang, Q, Millard, DC, Zheng, HJV, & Stanley, GB. Enhanced cortical specificity

of thalamic microstimulation through manipulation of charge delivery. Society for

Neuroscience Annual Meeting, Washington, DC, November 2011.

Millard, DC, Gollnick, CA, Hendry, WJ, Rozell, CJ, & Stanley, GB. The role of

magnitude and synchrony of population activity in nonlinear circuit processing in

the thalamocortical circuit of the rodent vibrissa system. Society for Neuroscience

Annual Meeting, San Diego, CA, November 2013.

5.1 Introduction

Electrical stimulation of neural tissue has been utilized for more than a century to

either probe neural circuitry [58, 166, 181, 68, 131, 186, 27, 209, 60] or create desired

percepts [165, 87, 155, 28, 85, 147, 189] (for a review, see [183, 39]). Following the
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success of cochlear implant technology, numerous efforts have been carried out to

electrically stimulate various sensory cortical regions to provide surrogate sensory

signals for applications in visual and somatosensory prostheses [139, 18, 184, 154],

to restore sensory function and aid in sensori-motor learning for closed loop brain

computer interfaces and motor prosthetics [143, 90]. Although recent advancement

in technology has enabled cell-type selective activation of neurons through optical

stimulation [16], the barriers to clinical implementation for these techniques make

electrical microstimulation the most likely route in the near term for clinical means

of controlling neural circuitry on relatively fast time scales for sensory prosthetics in

humans.

Despite intense investigation of the anatomy and physiology of sensory pathways

in the nervous system, beyond the sensory periphery little is known about how to

generally and systematically control activity in these pathways. Although recent

work has successfully demonstrated that it is possible for electrical microstimulation

to produce simple tactile and visual percepts that contain the same information as

those generated by natural sensory stimuli [155, 165], it is currently unclear how to

control neural circuitry on a temporal and spatial scale that relates to more complex,

naturalistic sensory inputs. In the context of sensory prostheses, given the prevalence

and preservation of well-organized topographic maps in all sensory modalities, it is

likely that the similarity between neuronal activation patterns evoked by electrical

microstimulation and those evoked by natural sensory stimuli plays a key role in

minimizing training time and mental load in disabled individuals who use the sensory

prostheses.

The previous chapters have characterized the distinct neural response properties

of the thalamocortical circuit to sensory and artificial stimuli, setting the stage for

the design of artificial stimuli to overcome these differences. Specifically, chapter 2

demonstrated that thalamic microstimulation activated a significantly larger region
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of cortex than topographically matched sensory stimuli. These results are hypothe-

sized to derive from the activation of axons residing close to the electrode tip, but

originating from cell bodies far from the electrode, instead of direct stimulation of

cell bodies in the immediate vicinity of the electrode. Single cell electrical stimulation

studies lend support to this hypothesis [140, 141].

Definitive support has been supplied by a recent study in which the composite

neural activity of an in-vivo network was recorded in response to direct electrical stim-

ulation of the circuit, indicating that axonal elements near the electrode are activated

to produce a sparse and distributed activity within the network [83]. In this study

and others, neuronal excitability as a function of electrical microstimulation param-

eters such as pulse duration, current amplitude, pulse frequency, and polarity of the

leading phase has been experimentally investigated [183]. However, recent modeling

work has suggested that microstimulation waveform shape may play a significant role

in the preferential activation of cell bodies versus axons [123], and this hypothesis has

not been experimentally validated [70].

Additionally, the results of chapters 2 and 4 highlighted the distinct trends for

trial-to-trial variability in the amplitude of the cortical response to varying intensity

of sensory and artificial stimuli. For sensory stimuli, the variability increased linearly

with the response amplitude, while for thalamic microstimulation and optogenetic

stimulation, the variability peaked at the threshold response amplitude. This has

profound implications for the ability to use surrogate sensory inputs to deliver infor-

mation to downstream neural structures. This is illustrated by the simple example of

encoding information in the strength of the cortical response to a single stimulus, for

which the mean amplitude and trial-to-trial variability determine the discriminabil-

ity between any two response distributions. Typically, the performance is highest at

the steepest slope along the stimulus-response curve, which is at the threshold for a

sigmoidal relationship. However, the threshold is the exact location of the highest
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variability for thalamic microstimulation, limiting overall performance.

Here in this chapter, we use stimulus design techniques to overcome the differ-

ences in spatial activation and trial-to-trial variability in thalamic microstimulation,

as compared to natural sensory inputs. Specifically, we used voltage sensitive dye

(VSD) imaging to quantify in-vivo, network level spatiotemporal cortical activation

in response to electrical microstimulation of the thalamic region that provides di-

rect input to cortex in the rat vibrissa pathway. First, we evaluated the location

and spread of the cortical response to thalamic microstimulation of varying waveform

shapes, which were predicted in the literature to preferentially stimulate cell bodies

instead of axons. We find that utilizing electrical microstimulation with cathode-

leading asymmetric waveforms significantly reduced the bias of cortical activation

and also increased the spatial specificity of cortical activation. And second, we de-

veloped a theoretical framework for the optimal design of artificial stimulation signal

sets to maximize the discriminability of downstream cortical responses based upon

the experimental results of chapter 2. The findings here provide some initial steps

toward the design and optimization of microstimulation of neural circuitry, and open

the door to more sophisticated engineering tools to develop technologies for more

effective control of activity in the nervous system.

5.2 Methods

5.2.1 Surgery and preparation

The same methods described previously (see Appendix A for more detail) were used

for the experiments in this chapter. Briefly, voltage sensitive dye imaging was used

to record the response of primary somatosensory cortex in the anesthetized rodent to

whisker deflections on the face and thalamic microstimulation.
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5.2.2 Thalamic microstimulation

An electrode positioned in the thalamus was used to deliver single electrical current

pulses to evoke cortical responses in the somatosensory pathway. The electrical stimuli

were created using a digital stimulus generator (Model: DS8000, WPI Inc., Sarasota,

Florida) and delivered using a digital linear stimulus isolator (Model: DLS 100, WPI

Inc., Sarasota, Florida) acting in current source mode. Additionally, a fast switching

relay was used to prevent charge accumulation on the electrode tip. All individual

electrical stimuli were charge balanced. Three type of stimulus waveforms were used

in this study: 1) a cathode-leading, symmetric biphasic waveform of 200 microseconds

duration per phase (Symm), 2) a cathode-leading, asymmetric biphasic waveform with

1 millisecond of cathodal duration and 200 microseconds of anodal duration (ASymC),

and 3) an anode-leading, asymmetric biphasic waveform with 1 millisecond of anodal

duration and 200 microseconds of cathodal duration (ASymA). In the last part of

this study, the asymmetry of the cathode-leading asymmetric, i.e. ASymC, waveform

was systematically changed to more precisely determine the effect of the asymmetry

on the specificity of electrical stimulation. Asymmetry was defined as the ratio of

the duration of the first phase to the duration of the second phase minus one, such

that the Symm waveform had an asymmetry of zero and the ASymC waveform had

an asymmetry of four. Waveforms were delivered over a range of current amplitudes

(30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 150 microamps). In each experiment,

eight amplitudes were randomly chosen.

5.2.3 Whisker stimulation

Sensory stimulation (S-Stim) was applied through computer controlled whisker de-

flections. Whiskers were trimmed at approximately 12mm from the face, and were

inserted into a glass pipette fixed to the end of a calibrated multi-layered piezoelec-

tric bimorph bending actuator (range of motion, 1 mm; bandwidth, 200 Hz; Physik
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Instrumente (PI), Auburn, MA) positioned 10 mm from the vibrissa pad. Vibrissae

were always deflected in the rostral-caudal plane. Punctate deflections consisted of

exponential rising and falling phases (99% rise time, 5 ms; 99% fall time, 5 ms) and

angular deflection velocities of 75, 150, 225, 300, 450, 600, 900, and 1200 deg/s were

used as mechanical probe stimuli (S-Stim).

5.2.4 VSD response analysis

All analyses were conducted using Matlab (Mathworks, Natick, MA). Voltage sen-

sitive dye responses to mechanical deflection of whiskers (S-Stim) and to thalamic

electrical stimulation, i.e. Symm, ASymC and ASymA, were averaged over 20 trials.

The averaged responses at each frame were then fitted with 2D Gaussians [37]. The

center of the 2D Gaussian was considered as the center of cortical activation.

A vectorized method was used to capture both the magnitude and direction of the

offset between the VSD center of mass and the center of the barrel electrophysiologi-

cally matched to the electrode location (principal barrel). The center of the principal

barrel was defined as the origin of the coordinate system. Because the barrel map

orientation within the VSD imaging window was not strictly the same for each exper-

imental session, another reference location was needed to ensure consistency of the

coordinate system from day to day. The vector, −→r0 (black vectors in Figure 5.1(c)),

given by the whisker immediately caudal to the principal whisker is used to define the

zero degree direction. Within this coordinate system the magnitude and direction of

the VSD response relative to the principal barrel are given by the vector, −−−→rV SD (blue

and red vectors in Figure 5.1(c)), connecting the origin to the center of mass of

the VSD response. The distance metric used in Figures 5.1 and 5.2 is given by the

average of the magnitude of −−−→rV SD across experimental sessions. The topographic bias

measurement used in Figure 5.1 is given by the angle between −−−→rV SD and −→r0 . The

coherence in this bias across experiments is calculated using the vector strength, V ,
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given by the equation below, where θ is the angle from ith experimental session [66]:

V =
1

n

√√√√(
n∑
i=1

cos θi)2 + (
n∑
i=1

sin θi)2, (22)

5.2.5 Functional Coding Analysis

Two theoretical models of the nonlinear input-output relationship were generated

based upon the experimentally observed data to investigate the functional conse-

quences of the disparate patterns of trial-to-trial variability for sensory and artificial

stimuli. The ability of an ideal observer of cortical activity to classify response pat-

terns is dependent on the statistical properties of the cortical response, such that the

different patterns of trial-to-trial variability influence the amount of information that

can be transmitted. Our goal was to determine the optimal set of cortical response

amplitudes (referred to as the signal set, φ that would maximize the classification

of an ideal observer, along with the stimuli that would generate optimal response

amplitudes.

A standard observer model was used to set up the classification paradigm, where

noisy observations of the cortical response, xi, were classified as one of the signal

classes, φ̂k, given the true signal class, φk, that the cortical response belonged to in

the signal set φ:

xi = φk + ni (23)

n ∼ N (0, σ(φk)) (24)

where the stimulus-dependent noise is Gaussian with zero mean and standard devi-

ation, σPVM(φk), that is a function of the signal, φk. The signal set, φ, of size K

contained K different scalar signals, {φ1 φ2 ... φK}, representing cortical response
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amplitudes. The overlap across the elements of the signal set, given by the relation-

ship between the signals and the variability, σ(φk), determined the overall perfor-

mance of the classifier. As a simple example, consider a set of five different cortical

response amplitudes, {φ1 ... φ5}. Upon observing the noisy observation of the corti-

cal response, xi, the ideal observer must infer which response actually occurred, φi.

For a small amount of noise, the observer will have little uncertainty about which

φi produced xi. However, for larger variability, the ideal observer may incorrectly

classify xi as φj, when it was really φi. Based on the relationship between the re-

sponse amplitudes, φ, and the variability, σ(φ), our goal was to choose the specific φk

that comprise the signal set, φ, such that the classification performance of the ideal

observer was maximal.

Because the cortical response amplitude was related to the input through a mono-

tonic, invertible sigmoidal function, as in 5.5(a), the notation was simplified by opti-

mizing the set of cortical response amplitudes, rather than the input stimulus itself.

However, it is important to note that the optimal input stimulus set, S, can be com-

puted directly from the optimal signal set, φ, according to:

S = f−1(φ), (25)

where f describes the invertible, nonlinear relationship between the input stimulus

and the cortical response amplitudes.

We based the two theoretical models on the distinct trends in trial-to-trial vari-

ability for sensory and artificial stimuli detailed in Chapter 2. For sensory stimuli, the

variability increased linearly as a function of the mean response amplitude (increasing

variance model, IVM). We modeled this as a linear function, σIV M(φk) in figure 5.5.

For artificial stimuli, the variability peaked at the threshold response amplitude. We

modeled this as a piece-wise linear function of the mean response amplitude, with

a peak in the variability at the threshold response amplitude (peak variance model,
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PVM), given by σPVM(φk) in figure 5.5. The variability increases linearly with the

mean response amplitude in the sub-threshold regime and decreases linearly with the

mean response amplitude in the supra-threshold regime.

To maximize the performance of the classifier, we optimized the elements of the

signal set by maximizing the distance between neighboring signals within the set. A

symmetric version of the Kullbeck-Liebler (KL) divergence, referred to as the resistor-

average distance (RAD), was used as the information theoretic distance between pairs

of Gaussian probability distributions given by the models described above. The KL

divergence, D1,2, between the probability distributions for two neighboring signals

within the signal set was calculated analytically according to the following equation:

D1,2 =
((φ1 − φ2)

2 + σ2(φ1)− σ2(φ2)

2σ2(φ2)
+ log

σ(φ2)

σ(φ1)
, (26)

where φi and σ(φi) give the mean and standard deviation of the Gaussian probability

distribution ith class in the signal set. The value D1,2 is not symmetric. However, the

RAD, which is a computationally tractable approximation to the Chernoff distance,

is made symmetric by taking the harmonic mean of D1,2 and D2,1 [91], according to

the following equation:

1

R1,2

=
1

D1,2

+
1

D2,1

. (27)

Through its close approximation to the Chernoff distance, the RAD is related to the

exponential decay rate of the total probability of error for an optimal classifier [41].

A custom optimization routine was used to maximize the pair-wise RAD between

nearest neighbor probability distributions along the static nonlinearity. When the

size, K, of the signal set, φ, was two, the maximization was trivial:

arg max
φ

R1,2 (28)
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In other words, the two elements, φk, that comprise φ were chosen to maximize

the RAD distance between their underlying probability distributions. Intuitively,

this was acheived by maximizing the difference between the response amplitudes and

minimizing the variability. For K > 2, the pair-wise RAD of the nearest neighbor dis-

tributions, Rk,k+1 and Rk−1,k, were simultaneously maximized by iteratively adjusting

each φk.

We evaluate the classification performance following the pair-wise RAD optimiza-

tion scheme by computing the average probability of correct classification, PC , by an

ideal observer of the output performing maximum likelihood classification. Explicitly,

this was the probability that the classified signal, φ̂i, was in fact the signal delivered,

φi. This value can be computed analytically from the Gaussian probability density

function according to the following equation:

PC = P (φ̂ = φ) =

∫ x2

x1

N (φk, σ(φk))dx for the interval [x1 x2]

such that L(x|φi) > L(x|φj)

for all i 6= j and x ∈ [x1 x2]

(29)

where N(φk, σ(φk)) is the Gaussian probability density function and L(x|φk) is the

likelihood of having observed x given signal φk. In this way, performance of the ideal

observer was computed as the average PC across all signals, φk, within the signal

set, φ. Alternately, we also utilized a global optimization scheme, as opposed to the

pair-wise RAD scheme above, based upon maximizing the minimum PC across the

signal set. Such an optimization scheme is typical in the communications literature

as it emphasizes utilization of the entire signal set [103].
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5.3 Stimulus waveform design augments spatial response
properties

All measurements were conducted in the thalamocortical circuit of the rodent vib-

rissa/whisker pathway in-vivo. The basic setup for whisker stimulation, thalamic

recording and microstimulation, and imaging of cortical activation was identical to

that described previously (see Appendix A for more detail). The spatiotemporal

dynamics of whisker-driven cortical responses were measured using voltage-sensitive

dye (VSD) imaging in-vivo. Deflection of a single mystacial whisker attached to a

computer controlled multilayer piezoelectric actuator (see methods) evoked a robust

cortical response 15-25ms following the facial whisker deflection, consistent with pre-

vious studies [152]. Although the cortical activation was initially topographically

restricted in and around the column/barrel associated with the PW, the cortical re-

sponse quickly spread across a large number of adjacent columns following a single

whisker deflection.

5.3.1 Functional validation of thalamic electrode placement.

A critical analysis here was that of the comparison of the cortical response to stim-

ulation of a single whisker (Sensory Stimulation, or S-Stim) with that induced by

thalamic microstimulation (Electrical Stimulation, or E-Stim). It was thus necessary

to precisely map the position of the stimulating electrode within the thalamic VPm

relative to the whisker array on the face. This was achieved by recording whisker-

driven spiking activity in response to a punctate deflection applied to individual

whiskers in the array. The principal whisker was defined as the whisker which evoked

the strongest spiking activity in terms of the mean spike count within a 30ms win-

dow following the whisker deflection [196]. On average, the PW elicited significantly

more spikes per deflection as compared to the adjacent whiskers (AWs) (p=0.01,

Mann-Whitney U-test, n=7), consistent with previous studies [25].

114



www.manaraa.com

5.3.2 Thalamic microstimulation results in a systematic topographical
bias in cortical activation.

The locus of activation of the primary somatosensory cortex carries important in-

formation about the somatotopy of the body surface. Activation of cortex through

thalamic microstimulation revealed a systematic bias in the locus of activation that

was not seen for the sensory stimulus. Figure 5.1(a) shows a typical VSD response,

where the top row is the sequence of VSD images taken following a punctate de-

flection of a single whisker (S-Stim), and the bottom row is the sequence of VSD

images taken after a single microstimulation pulse was delivered to the corresponding

topographically aligned region in the VPm thalamus (E-Stim). The E-Stim was a

conventional symmetric biphasic current pulse waveform (60 µA in amplitude, 200µs

per phase). It is qualitatively apparent from this example that the locus of cortical

activation was different between the S-Stim and E-Stim cases, and that the initial

onset of activation from E-Stim was not topographically aligned with the cortical

column/barrel to which this region of VPm thalamus projects (denoted with black

dot in center of overlaid columnar map) as it is for the S-Stim response (top row).

The centroid of the Gaussian fit of the VSD signal was then used to quantify this

effect, specifically through the distance between the centroid measured from the VSD

signal (at onset frame) and the actual center of the column. On average, the centroid

of cortical activation in response to the sensory stimulus was within the cortical col-

umn/barrel (distance less than 250µm, which is approximately the radius of a cortical

column/barrel, denoted by dashed line in Figure 5.1(b)). In contrast, the centroid of

the Gaussian fit of the VSD signal in response to thalamic microstimulation diverged

significantly from the center of the actual cortical column (distance of centroid to

actual center >850µm, Figure 5.1(b)). The mis-alignment of the cortical activation

with the actual barrel/column corresponding to the whisker/electrode location was
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significantly greater for the thalamic microstimulation than for the whisker stimula-

tion (p<0.001, Wilcoxon signed-rank test, Figure 5.1(b), n=9). Furthermore, we have

found that there was no correlation between topographic bias and stimulus intensity

(p = 0.539, Mann-Whitney U test).

The discrepancy between the centroid of cortical activation in response to thala-

mic microstimulation and the centroid of the principal barrel column might be due

to increased variability in the measurement of the centroid of the VSD in the case of

the thalamic microstimulation. In this scenario, we would expect the centroid of the

cortical activation to be randomly located relative to the actual center of the bar-

rel/column. Figure 5.1(c) shows the distribution of vectors computed as the difference

between the centroid of cortical activation and the actual center of the cortical col-

umn/barrel, capturing both magnitude and direction. While the vectors measuring

discrepancy for the S-Stim case exhibited a more dispersed distribution and an overall

difference well within the actual column (left plot, light blue line is average, relative

to column denoted by dashed circle), the vectors associated with the thalamic micros-

timulation exhibited a strong bias along the cortical columns associated with a row

of whiskers (right plot). To quantify this notion, we used vector strength to measure

how well the vectors were aligned along a common direction, as opposed to randomly

dispersed [66] (see Methods). Indeed, the vectors in the thalamic microstimulation

case were more locked to the direction along the barrel row (vector strength: 0.91,

Figure 5.1(c): right) than in the whisker deflection case (vector strength: 0.63, Figure

5.1(c): left), pointing to a systematic bias in the cortical activation in response to

thalamic microstimulation.

5.3.3 Cathode-leading asymmetric microstimulation significantly improved
the topographic activation of cortex.

Modeling studies have suggested that the conventional symmetric, charge-balanced

current waveform pulse (utilized in Figure 5.1) may preferentially activate axons as
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Figure 5.1: Thalamic microstimulation with symmetric waveforms results in a sys-
tematic topographical bias in cortical activation. (a) Top: typical VSD response to
whisker stimulation. Bottom: typical VSD response to thalamic microstimulation
with a symmetric waveform. (b) The centroid of the VSD signal in response to thala-
mic microstimulation (Symm) diverged significantly more from the center of the actual
cortical column than the centroid of the VSD signal in response to sensory stimula-
tion (S-Stim). (c) The distribution of vectors computed as the difference between the
centroid of cortical activation and the actual center of the cortical column/barrel for
both S-Stim and E-Stim (Symm) (p<0.001, Wilcoxon signed-rank test, n=9). The
vectors from the E-stim (Symm) response show a consistent topographical bias.

117



www.manaraa.com

opposed to cell bodies [123]. In contrast, it has been asserted that using biphasic

current pulses with asymmetric waveforms can preferentially activate cell bodies. If

the bias in cortical activation exhibited in Figure 5.1 was due to the activation of

fibers of passage rather than cell bodies local to the electrode tip, then an asym-

metric pulse design may alleviate some of this problem. Using a cathode-leading

asymmetric waveform for the thalamic microstimulation significantly decreased the

discrepency between the centroids of cortical activation and the actual center of the

barrel/column. This is first shown qualitatively in Figure 5.2(a), where the top row

is again the sequence of VSD images following whisker stimulation, the middle row

following thalamic microstimulation with a symmetric current injection waveform,

and the third row following thalamic microstimulation with an asymmetric, cathode-

leading current injection waveform. Qualitatively, we see that the asymmetric micros-

timulation results in an initial onset of cortical activation that is more topographically

aligned with the response to the whisker stimulation, as compared to the symmetric

microstimulation. The quantification in Figure 5.1(b) was repeated for the asymmet-

ric, cathode-leading case, and resulted in a significant decrease in the topographic

discrepency (from >850um to 617µm, p=0.003, Wilcoxon signed-rank test, Figure

5.2(b), n=9). Therefore, cathode-leading asymmetric microstimulation significantly

diminished the discrepancy between the centroids of cortical activation and the cen-

troid of the principal barrel, improving the topographic activation of cortex.

To rule out the possibility that this improvement was due to the difference of

the derivative of charge delivered (the total charge per phase was the same for both

AsymC and Symm, and the amplitudes of the anodal phase was the same), we also

tested the anode-leading asymmetric waveform, which is the inverse of the cathode-

leading asymmetric waveform. In contrast to the cathode-leading asymmetric wave-

form, the cortical activation induced by the anode-leading asymmetric waveform di-

verged even further from the correct topographic location than that for the symmetric
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microstimulation waveform (p<0.001, Wilcoxon signed-rank test, Figure 5.2(b), n=9).

Interestingly, the difference in the topographic localization of the cortical responses

induced by the different microstimulation waveforms was most prominent at the onset

of cortical activation (initial frame), and was reduced as the VSD signal propagated

beyond the initial frame (Figure 5.2(c)).

5.3.4 The topographic alignment of the cortical activation was enhanced
with increasing asymmetry of the microstimulation waveform.

To measure the effects of temporal asymmetry in the charge delivery of the microstim-

ulation on the localization of the cortical response, the degree of asymmetry in the

microstimulation pulse was systematically varied. Specifically, a measure of asym-

metry was defined as the duration of the cathodal phase over the duration of the

anodal phase minus one, where the perfectly symmetric waveform has an asymmetry

measure of zero, and increasing the duration of the initial cathodal component of the

waveform increases the measure of asymmetry, as shown in Figure 5.3(a). Note that

the waveform in each case was charge balanced, yielding a net charge delivery of zero

over the duration of the waveform. The discrepancy between the centroid of cortical

activation and the center of the actual column/barrel exponentially decayed with the

asymmetry of the waveform, and saturated at approximately 650µm (Figure 5.3(b)).

5.3.5 Cathode-leading asymmetric waveform also improved the speci-
ficity of thalamic microstimulation.

In addition to affecting the locus of activation following thalamic microstimulation,

the waveform properties also had a significant effect on the magnitude and area of

cortical activation following microstimulation. The magnitude of the cortical response

was defined as the magnitude of the two-dimensional Gaussian fitted to the cortical

VSD signal, and the area of cortical activation was defined as the size of the cortical

region spanned by the two-dimensional Gaussian at a magnitude of three times the

standard deviation of the background noise. This is in contrast to the spatial spread
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Figure 5.2: Cathode-leading asymmetric microstimulation significantly improved the
topographic activation of cortex. (a) Top: typical VSD response to whisker stimu-
lation. Middle: typical VSD response to thalamic microstimulation with a symmet-
ric waveform (Symm). Bottom: typical VSD response to thalamic microstimulation
with a cathode-leading asymmetric waveform (AsymC). The examples shown here are
from same experimental session. (b) Topographic discrepancy of VSD signals in re-
sponse to S-Stim, E-Stim (AsymC), E-Stim (Symm), and E-Stim (AsymA). Cathode-
leading asymmetric microstimulation significantly decreased the topographic discrep-
ancy (p=0.003, Wilcoxon signed-rank test, n=9). In contrast, anode-leading asym-
metric microstimulation significantly enlarged the topographic discrepancy (p<0.001,
Wilcoxon signed-rank test, n=9). (c) The difference in the topographic localization of
the cortical responses induced by the different microstimulation waveforms was most
prominent at the onset of cortical activation (initial frame), and was reduced as the
VSD signal propagated beyond the initial frame.
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Figure 5.3: The topographic alignment of the cortical activation was enhanced with
increasing asymmetry of the microstimulation waveform. (a) Asymmetric waveforms
with different asymmetry. Asymmetry was defined as the duration of the cathodal
phase over the duration of the anodal phase minus one, where the perfectly symmet-
ric waveform has an asymmetry measure of zero. (b) The topographic discrepancy
exponentially decayed with the asymmetry of the waveform, and saturated at approx-
imately 650µm.

measurement used in chapter 2, which was computed as the average radius of the

70% contour, thus normalizing for the amplitude of the response.

In general, the area and magnitude of the cortical activation increased with in-

creasing stimulus strength. Figure 5.4(a) shows the relationship between increasing

angular velocity of the punctate whisker deflection and the magnitude (left) and area

(middle) of cortical activation, with a monotonic increase in each. The area of acti-

vation was coupled to the magnitude, with a fairly linear relationship (Figure 5.4(a),

right). Similarly, with the thalamic microstimulation, there was an increase in the

magnitude and area of cortical activation with increasing amplitude of the current

pulse, shown for the symmetric and asymmetric cases in the left and middle panels

of Figures 5.4(b) and 5.4(c). Again, in both of these cases, the magnitude and area

of cortical activation were coupled, exhibiting a fairly linear relationship for each

(Figures 5.4(b) and 5.4(c), right panels).
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Figure 5.4: Cathode-leading asymmetric waveform also improved the specificity of
thalamic microstimulation. (a) The relationship between increasing angular velocity
of the punctate whisker deflection and the magnitude (left) and area (middle) of
cortical activation. Right: the approximately linear relationship between the area
of activation and the magnitude. (b) The relationship between increasing amplitude
of the current pulse with symmetric waveform and the magnitude (left) and area
(middle) of cortical activation. Right: the approximately linear relationship between
the area of activation and the magnitude. (c) Same as in (b) for E-Stim (AsymC).
(d) The slopes of the relationships between the area and magnitude of activation
for S-Stim, E-Stim (AsymC) and E-Stim (Symm). Using the asymmetric waveform
resulted in a slope much closer to that of the sensory stimulation (S-Stim).
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In utilizing the thalamic microstimulation as a surrogate input to the pathway,

the nominal goal is to activate cortex in a manner that is consistent with that of

sensory stimulation (S-Stim, Figure 5.4(a)). To activate the appropriate area of

cortex associated with a particular angular velocity of the tactile input, for example,

the current amplitude of the microstimulation pulse can be adjusted. However, for

the symmetric waveform, the cortical response was quite widespread, resulting in

an area of activation that would be substantially greater than that corresponding

to the sensory stimulation, even for relatively low values of current near threshold.

Furthermore, the coupling of the area and magnitude of activation was such that if

the magnitude of activation were matched to that of the sensory stimulation, the area

of activation would be too great, and if the area of activation were matched to that of

the sensory stimulation, the magnitude would be too low. This was not the case for

the asymmetric microstimulation waveform. This is well captured by comparing the

slopes of the relationships between the area and magnitude of activation for each case,

as shown in Figure 5.4(d), where the slope for the symmetric case was significantly

lower than that for sensory stimulation, but using an asymmetric waveform resulted

in a slope much closer to that of the sensory stimulation.

5.4 Optimal signal set design maximized response discrim-
inability

The distinct ways in which sensory and artificial stimulus-evoked activity propa-

gate through neural circuits has profound implications for the ability to use artificial

stimuli as surrogates for sensory stimulation. Specifically, the ability to discrimi-

nate between a set of different input strengths depends upon the mean amplitude

and trial-to-trial variability of the cortical response. Similarly, the spatial spread

would determine the ability to resolve various sensory inputs or stimulation on adja-

cent electrodes. We explored the simplest example of this using a theoretical model

mimicking the nonlinear input-output relationship observed for sensory and artificial
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stimuli described in Chapter 2. Using an observer model (see methods), we assessed

the performance of a maximum likelihood classifier on a signal set, φ, with K ele-

ments, such that φ = {φ1 φ2 ... φK}. Each signal, φk, was described by a Gaussian

probability density function with coupled mean and standard deviation given by the

nonlinear input-output relationship. Importantly, the goal was to determine the op-

timally discriminable cortical response amplitudes, given by the signal set φ, but

the optimal stimulus set, S, was easily extracted through the invertible nonlinear

relationship between the input and output shown in the left portion of figure 5.5(a).

5.4.1 Signal set design accounts for distinct static nonlinear properties

In figure 5.5(a), we describe two models of trial to trial variability: 1) the variability

increased linearly as a function of the mean response amplitude, σIV M(φk), similar

to whisker stimuli, and 2) the variability peaks at the threshold response amplitude,

σPVM(φk), as for electrical and optical stimuli. Both the peak variability and base-

line variability were equal across the two models, as was the case experimentally.

From a traditional population coding perspective, and under constant variability, the

large slope in the input-output relationship at the threshold would provide the best

discriminability between the response amplitudes. However, this was exactly where

the stimulus dependent variability, σPVM(φk), in the model of electrical and opti-

cal stimuli was highest, which would significantly impair classification performance.

Thus, through the following signal set design analysis, we directly investigated the

functional coding consequences of the distinct trial-to-trial variability.

The relationship between the mean and standard deviation establishes the prob-

ability of discriminating between the various signals. We used the resistor-average

distance (RAD), a symmetric version of the Kullbeck-Liebler (KL) divergence, to

quantify the distance between neighboring signals [91]. The RAD is a computa-

tionally tractable approximation to the Chernoff distance, which is related to the
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exponential decay rate of the total probability of error for an optimal classifier as

more data accumulates [41]. In this way, a large RAD between two distributions

indicates better classification performance. Thus, we can maximize the classification

performance between two stimulus strengths by maximizing the RAD between the

corresponding distributions of the cortical response. For both σIV M and σPVM in

figure 5.5(b), the best classification performance, for K = 2, occurred between the

extrema of the saturating nonlinearity as it maximized the RAD. For greater than two

inputs, however, the optimal choice of the signal set, φ, was non-trivial. To find the

optimal signal sets, we maximized the pair-wise RAD between the nearest neighbor

signal distributions. The optimal signal sets for K = {2, 3, 6} signals are shown for

σIV M and σPVM in the right portion of figure 5.5(b).

After performing the optimization, we calculated the average probability of correct

classification by an ideal observer as a function of the size of the signal set, as shown

in figure 5.5(c). The average performance for σIV M and σPVM was found to be nearly

identical. As the size of the signal set increased, the average performance decreased

due to the increasing overlap between the nearest neighbor distributions, eventually

approaching chance performance (dashed line). The results indicate that although

activity propagates differently in the two models, knowledge of the relationship allows

for the identification of optimal signal sets that maximize the performance of an ideal

observer of the output.

However, evaluating the performance of each class within the signal set illuminates

some key differences between the two models. Figure 5.5(d) presents the classification

matrix for σIV M and σPVM . Each location in the matrix indicates the probability of

an ideal observer classifying a trial as any of the signals, φi, given the true signal,

φj. For both σIV M and σPVM , the minimum, φ1, and maximum, φK , signal had

the highest performance because they only had one nearest neighbor to compete

with. But, for the intermediate classes the trends were quite different. For σIV M ,
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Figure 5.5: Optimal signal set design can account for distinct static nonlinear prop-
erties. (a) Two models of trial-to-trial variability. Model one (black) has increasing
variability, σIV M , as function of the mean output. Model two (red) has a peak in
variability, σPVM , at the threshold output. The mean output as a function of the
input (arbitrary units) was the same for both models. (b) The variability made it
non-trivial to estimate the output response on an individual trial, and this became
more difficult as more response levels are to be encoded (right: examples of 2, 3, and
6 signals for σIV M and σPVM). (c) Average probability of correct classification by an
ideal observer when the pairwise RAD was optimized for σIV M and σPVM . The clas-
sification performance was identical for the two models and decreases for larger signal
sets. The dashed line indicates chance performance. (d) Discrimination matrices for
classification performance of σIV M (left) and σIV M (right). Each index in the matrix
gives the probability of classifying an input as xi given that it was actually xj, for all
i and j.
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the probability of correctly identifying the signal (diagonal values in the classification

matrix) was equal for all intermediate signals, and errors were made to the nearest

neighbor distributions. For σPVM , the same trend held, with the exception of the

two middle signals, for which the probability of correctly identifying the signal was

nearly zero. Thus, although the two models had identical average performance, σPVM

conveyed fewer input signals accurately under the maximization of the pair-wise RAD.

5.4.2 Functional consequences of nonlinear properties of activity propa-
gation

To penalize for ignoring portions of the signal set, we determined the optimal sets

through a different optimization scheme. Rather than maximizing the pair-wise dis-

tances, we instead maximized the minimum probability of correct classification by an

ideal observer across all signals within the signal set, as illustrated in figure 5.6(a).

In this way, we forced the optimal signal sets to use all of the input classes, as is

evident from the classification matrices in figure 5.6(b). Once again, the distributions

with the means at the extrema, φ1 and φK , had the highest performance in each of

the models. However, under this optimization all signals were used for both of the

models. The minimum probability of correct across all classes is shown as a function

of the signal set size in figure 5.6(c). We now observe different trends across the two

models. σPVM performed better for a signal set with only two classes because of the

low variability at the minimum and maximum response amplitudes, whereas σIV M

performed better for signal sets with more than two classes. These results suggest

that a static nonlinearity similar to σIV M , with monotonically increasing variabil-

ity, should provide better discrimination performance across multiple input classes.

Conversely, a static nonlinearity similar to σPVM , with peak variability at threshold,

provides better detection information.

More importantly, these results highlight that comparable levels of performance
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Figure 5.6: Functional consequences of trial-to-trial variability on response discrim-
inability. (a) An alternate optimization scheme was to maximize the minimum prob-
ability of the ideal observer correctly classifying an input. The highlighted region
indicates when that input would have the highest likelihood and thus be correctly
classified. The area under the curve in the shaded region gives the probability of the
ideal observer correctly classifying the input. (b) Discrimination matrices for clas-
sification of σIV M (left) and σPVM (right) under the max-min optimization scheme.
Both of the models used all input classes. (c) Minimum probability of the ideal ob-
server correctly classifying the input under the max-min optimization scheme. σPVM
provided better performance for two inputs, while σIV M provided better performance
for larger signal sets. The black dashed line indicates chance, while the red dashed
line is the performance when using the optimal signal set from σIV M as the input to
σPVM .
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can be achieved across distinctly different response properties as long as the appropri-

ate signal set is used. To illustrate this, we used the optimal signal set from σIV M as

the input to σPVM and evaluated the performance (dashed red line in figure 5.6(c)).

Using the mismatched signal set, the performance was considerably worse than the

optimal signal set. As the size of the signal set increased, the discrepancy became

greater and performance fell below chance. Ultimately, our theoretical results suggest

that the optimal signal set will not be the same for sensory and artificial stimuli, but

by using knowledge of the input-output response transformations, we may be able to

design signal sets to maximize performance for artificial stimulation of neural circuits.

5.5 Discussion

Here, we characterized the response of primary somatosensory cortex to both periph-

eral tactile stimulation and electrical stimulation of the thalamic region providing

direct input to barrel cortex. Conventional symmetric biphasic electrical stimulation

activated a broad region of the cortex centered at a region that was multiple cortical

columns away from the cortical column which was topographically aligned with the

electrode location. Although not directly assessed here, the consequences of this to-

pographic mismatch would likely produce undesired percepts because previous work

with brain imaging has suggested that there is a strong correlation between corti-

cal activation and perception [36, 9]. Previous studies using thalamic stimulation in

humans have reported that percepts induced by electrical stimulation are often un-

natural or discordant with relation to the anatomical electrode position [145, 148, 71],

potentially linked to the phenomena we describe here.

Although it has been hypothesized that the aberrant sensations resulting from mi-

crostimulation are due to activation of axons passing by the electrode tip in addition

to the nearby cell bodies, the downstream neural response causing these sensations
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has not been studied in detail for functional validation. Beyond the sensory periph-

ery, the anatomy of the circuitry places neuronal cell bodies and axonal fiber tracts

within close proximity of one another. As a result, microstimulation can activate

neurons with cell bodies that are quite far from the site of stimulation [83, 29], be-

yond that predicted by conventional understanding of how electric fields grow with

the magnitude of the current injection. What has been observed is that neurons with

cell bodies very distal to the stimulation site can still be activated for very small cur-

rents, attributed to the crossing of fiber tracts through the volume of tissue affected

by the electric field, resulting in what Butovas and Schwarz refer to as a spatiotem-

poral “blurring” of the activation. In a more recent study, two-photon microsocopy

was utilized to observe the neural responses to nearby electrical stimulation in-vivo.

Through this technique, the authors provide strong evidence that electrical stimula-

tion principally activates axons within a very short radial distance from the electrode

[83].

Previous modeling work predicts that alterations in the stimulation waveform

change the relative stimulation thresholds for cell bodies near the electrode and pass-

ing axons [123]. This is hypothesized to occur through differential inactivation of

sodium channels at the cell body and nearest node of Ranvier caused by the long

subthreshold cathodal phase of the asymmetric stimulus waveform [69, 123]. The

sodium channels at the node of Ranvier are inactivated by the depolarizing catho-

dal pulse and then the subsequent short duration, high current anodal phase pref-

erentially stimulates the nearby cell bodies. Although this study does not provide

observation at this level of detail, functionally we observed a distinct difference in

cortical response when using symmetric vs asymmetric stimulation that is consistent

with this notion. Whereas the response to symmetric stimulation was centered mul-

tiple cortical columns away from the cortical column topographically matched to the

electrode position, the response to asymmetric stimulation was shifted more closely
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to the anatomically expected cortical column. Additionally, recent work in awake

behaving rats has shown that asymmetric waveforms had higher detection thresh-

olds than symmetric waveforms for intracortical microstimulation [96]. This finding

is consistent with our results and together they indicate that asymmetric and sym-

metric stimulation likely activate different neural elements. Further investigation is

necessary to more directly determine whether asymmetric pulses provide increased

selectivity of cell bodies over axons.

Although the exact anatomy of the projecting fibers from the VPm thalamus to

layer 4 of the primary somatosensory cortex has not been fully understood, histo-

logical evidence suggests that fibers from VPm regions (barreloids) associated with

more rostral tactile input pass by the VPm barreloids associated with more caudal

input on the way to primary somatosensory cortex [75, 203]. Given this anatomical

arrangement, we would expect that if symmetric stimulation preferentially activates

axons as opposed to cell bodies, the cortical activation would be centered in the cor-

tical columns corresponding to whiskers more rostral than the whisker corresponding

to the electrode location. Indeed, we observed a systematic topographic bias in the

center of mass of the cortical response towards cortical columns representing rostral

inputs when using symmetric stimulation. The systematic topographic bias, in con-

cert with previous histological evidence, strengthens the support for the hypothesis

that asymmetric stimulation increases the selectivity stimulation of cell bodies vs.

axons.

While the results presented here are specific to stimulation of the VPm region

of the somatosensory thalamus in the rodent, we expect the phenomenon to be con-

sistent in other regions of the brain, and thus the findings here are general. We

use thalamic stimulation due to the extensive literature detailing the anatomical and

functional characterization of the thalamocortical circuit in the rodent vibrissa sys-

tem [174, 171, 129], and the fact that it provides direct, mono-synaptic input to
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cortical layer 4 in the vibrissa region. Furthermore, stimulation in the thalamus

paired with recording in cortex allows us to observe the direct neural response to

electrical stimulation on a network level by recording only two synapses downstream

of the stimulation, with voltage sensitive dye imaging of layer 2/3 cortical activity.

Importantly, the site of the stimulating electrode in the VPm thalamus is approxi-

mately four millimeters from the site of the VSD imaging in cortex, implying that

the observed cortical activation is due to engagement of the thalamocortical circuit,

rather than passive conduction through the tissue. The voltage sensitive dye imaging

proves ideal for this study due to its high spatial and temporal resolution, allowing

a full characterization of the spatiotemporal cortical response to a point source of

current in the thalamus [72, 109]. While the voltage sensitive dye signal is limited

to layer 2/3 activity due to light scattering, it has been shown that early periods of

activation in layer 2/3 reflect the activation patterns within layer 4, suggesting that

the VSD imaging at the activation onset is likely very similar to the activity of the

input layer 4 [152]. It should be noted that the topographic misalignment of the

cortical activity in response to thalamic microstimulation is most pronounced at the

onset of cortical activation. However, the later stage of activation spreads across a

large region of cortex and even so, some degree of disrupted somatotopy does persist

following the initial activation. The coding of any sensory stimuli more complex than

the unitary impulses we utilize here could thus not rely on later stages of cortical

activation to alleviate the problem. Initial activation of areas not topographically

aligned with the desired percept would preclude subsequent or concurrent activation

of that region in the context of more rich, spatiotemporal sensory stimuli. Finally, al-

though the VSD activity has been linked to sub-threshold membrane potentials, and

thus the measured signals do not directly reflect action potentials, action potentials

do obviously accompany strong depolarizations and the hard-thresholding we apply

to the VSD imaging likely captures the distinction.
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Our findings have strong implications for delivering information to the brain for

sensory prosthetics applications. Microstimulation disrupts the somatotopy that the

brain strives to maintain throughout development, possibly through the activation of

passing axon fiber tracts, which would be a problem in almost all brain regions includ-

ing the most simply arranged anatomy of the periphery. This could lead to nearby

electrodes producing similar or overlapping perceptions if the same axons pass by

each electrode. For instance, Grill, et al, reported that humans often experience

paresthesias in response to thalamic microstimulation that are localized to a different

somatotopic region than the mapped sensory receptive field of the stimulating elec-

trode, termed a discordant paresthesia [71]. While it is clear that the capabilities for

plasticity and learning in the brain improve the likelihood of success in interpreting

this surrogate signaling to the brain, there is a fundamental limit in that the sen-

sations must be discriminable to be functionally useful [193]. This problem could

be alleviated by ensuring that a one-to-one topographic map is preserved, even if

different from the one of the normal physiology. By more closely adhering to the nor-

mal somatotopy, asymmetric stimulation pulses ensure that sensations produced by

nearby electrodes are less affected by the underlying axonal anatomy and more likely

to be distinct and natural sensations. Additionally, asymmetric stimulation pulses

result in cortical responses that have a higher spatial specificity, and much closer to

normal sensory stimulation, than symmetric biphasic pulses. Given that the discrim-

inability of information delivered to the brain is likely affected by the overlap of the

cortical responses to neighboring inputs, asymmetric cathodal stimulation would thus

likely increase the functional resolution of a sensory prosthetic.

In addition to the spatial discriminability, the distinct nonlinear response prop-

erties for sensory and artificial stimuli pose a problem for encoding information in

the strength of the neural response. A functional treatment of the distinct patterns

of trial-to-trial variability suggests that sensory and artificial stimuli may provide
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different amounts of information to the neural circuit. Through optimal signal set

design, knowledge of the trial-to-trial variability can be used to maximize information

throughput, but ultimately the pattern of increasing variability observed with whisker

stimuli provides greater discrimination information to downstream structures.

Previous psychophysical experiments involving the detection or discrimination

of sensory or artificial inputs provides insight into the functional consequences of

the theoretical results described above. Two common task designs for exploring the

sensation caused by sensory and electrical stimuli are the “go-no go” paradigm and

the two alternative forced choice task. The “go-no go” paradigm requires the animal

to respond to a particular stimulus and not respond otherwise, and has been used

extensively to study the detection of sensory stimuli and artificial inputs delivered

at various stages of the sensory pathways. The psychometric curve describing the

probability of the animals response to varying strength of the stimulus is typically

sigmoidal [180, 146], much like the amplitude-response curves in figure 5.5(a) of this

study. The high variability at threshold described for electrical and optical stimuli

in chapter 2 and similar to σPVM suggests that the animal would experience all-

or-none sensations preventing the discrimination of stimulus strengths. The “go-no

go” paradigm does not produce the requisite information to determine the sensitivity

of the psychometric curve because the response is all-or-none itself. To test the

predictions from this study, a two alternative forced choice task design (2AFC) would

be required, where the animal can respond in two different ways, one response for

one stimulus and another for a different stimulus. In this way, the animal could be

presented with two stimuli simultaneously, or in succession, and respond in one of two

ways to indicate which stimulus was stronger. However, such a task would require

simultaneous stimulation on two electrode sites, which likely would not have the same

static nonlinearity, or successive stimulation on a single electrode site, requiring the

animal to remember the strength of the first.
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Taken together, the results here provide some initial directions in the design of

charge delivery for producing functionally relevant activation in downstream circuits

through electrical microstimulation. Future experimental and modeling studies may

further optimize the stimulus design and expand the problem to more complex pat-

terns of microstimulation across electrode arrays, which are requisite to deliver the

high amount of information embedded in the sensory environment. For example,

the optimal signal set design could be expanded to simultaneously optimize the per-

formance of an ideal observer in classifying the spatial location of the response in

addition to the amplitude. Just as this study sought to characterize and control

the nonlinearities involved in the amplitude and spatial activation profile of a single

stimulus pulse, future work must also address the dynamic nonlinearity, described in

chapters 3 and 4, that governs the neural response to temporal sequences of stimula-

tion in order to gain precise control of complex neural circuits, which is essential for

high fidelity sensory prosthetic technology.
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CHAPTER VI

CONTROL OF THE NONLINEAR DYNAMICS OF

CORTICAL ACTIVATION THROUGH OPTOGENETIC

MANIPULATION OF THALAMIC STATE

Portions of this chapter were presented in poster form at the following conference:

Millard, DC, Gollnick, CA, Hendry, WJ, Rozell, CJ, & Stanley, GB. The role of

magnitude and synchrony of population activity in nonlinear circuit processing in

the thalamocortical circuit of the rodent vibrissa system. Society for Neuroscience

Annual Meeting, San Diego, CA, November 2013.

6.1 Introduction

The thalamus has traditionally been considered a “relay station”, merely passing

along sensory information from the periphery to the cortex. However, due to the

unique circuit properties of the thalamus, others have proposed that the thalamus is

ideally positioned to gate and/or modulate information transmission to cortex [42].

Specifically, thalamic neurons are known to operate in two distinct firing modes:

tonic firing and burst firing [170]. Sherman proposed that, by dynamically switching

between these two states, the thalamus may modulate not only “how much”, but

also “what type” of information is transmitted to cortex [65, 157, 196, 122, 177, 170].

Here, we directly control the transition between the bursting and tonic firing modes in

the sensory thalamus and determine the extent to which the thalamic state modulates

the propagation of neural activity to cortex.

While the neural circuit in the thalamus is composed of a canonical relay with
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feedforward inhibition [171], the individual neurons contain specialized membrane dy-

namics enabling diverse firing statistics. In the tonic firing mode, thalamic neurons

fire action potentials at high rates with Poisson-like statistics. The burst firing mode,

on the other hand, is characterized by long periods of quiescence and brief volleys

of action potentials within a short time window [164], mediated by T-type calcium

channels [170]. Switching between these two state occurs regularly in concert with

shifts in arousal [54, 111, 161] or attention [122], and is linked through these neu-

romodulatory mechanisms to the “desynchronized” thalamocortical state [43, 160].

Through the use of optogenetics, recent work has demonstrated that the control of

thalamic polarization is sufficient to drive cortex into the synchronized [76] or desyn-

chronized [159] states. And yet, the effect of thalamic state on the propagation of

stimulus-evoked activity to downstream structures remains poorly understood.

Under direct optogenetic control of thalamic depolarization, we quantified the

propagation of stimulus-evoked activity from the thalamus to cortex. Voltage sensi-

tive dye imaging was used to measure the spatiotemporal cortical response to thalamic

microstimulation, while the thalamic state was controlled through optogenetic means.

First, at the level of the thalamus, depolarization eliminated bursting activity. How-

ever, through precise and systematic modulation of the thalamic firing rate, we find

that tonic and burst firing occupy two ends of a continuum, rather than discrete states.

Within this continuum, the propagation of neural activity generated by thalamic mi-

crostimulation was significantly altered. The trial-to-trial variability in the cortical

response was reduced under depolarization, potentially increasing the discriminability

in cortex. Further, the elimination of bursting prevented the paired pulse facilitation

elicited by sub-threshold thalamic microstimulation, such that the dynamics were

more similar to those of natural sensory stimuli. Ultimately, by directly modulating

the thalamic state, we demonstrate control over the nonlinear propagation of activ-

ity to downstream structures, with potential application towards the development of
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contextual sensory prostheses and more generally for understanding the role of state

in the information processing capabilities of neural circuits.

6.2 Methods

6.2.1 Surgery and preparation

The same methods described previously (see Appendix A for more detail) were used

for the experiments in this chapter. Briefly, voltage sensitive dye imaging was used

to record the response of primary somatosensory cortex in the anesthetized rodent to

whisker deflections on the face and thalamic microstimulation.

6.2.2 Optogenetic expression

All animals used for the experiment in this chapter underwent an initial surgery for

the injection of a viral vector to induce expression of either channelrhodopsin (ChR2)

or the stabilized step function opsin (SSFO) [16, 211, 212]. The injection was made

in the ventral postero-medial thalamus according to coordinates described previously

(see Appendix A). Viral expression was verified experimentally in all animals through

light-responsive electrophysiological recordings, and using histology in select animals.

6.2.3 Optical stimulation

Light emitting diodes (LED) were used to excite the ChR2 and SSFO in vivo. An

“optrode” was positioned in the VPM thalamus, with the fiber optic directly attached

to the LED to minimize light loss. A 465nm LED was used for animals expressing

ChR2. Because the ChR2 channel quickly closed when the light was removed [120],

the light was delivered continuously to maintain the long timescale depolarization

involved in this study. A closed loop current source was used to drive the LED [138].

For animals expressing the SSFO, a 465nm LED (LED Engin Inc, San Jose, CA) was

used in combination with a 590nm LED (LED Engin Inc, San Jose, CA) through a

wavelength combiner (Doric Lenses Inc, Quebec, Canada). The SSFO channel has
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a long closing time, such that the channel remains open long past the duration of

the light stimulus, so brief pulses of light (∼5-50ms) from the 465nm LED were used

to open the channel over long timescales. To close the channel, 15 seconds of yellow

light from the 590nm LED was delivered through the fiber optic.

6.2.4 Thalamic microstimulation

The same methods described previously and in Appendix A were used in this chap-

ter. Paired stimuli, with an inter-stimulus interval of 150ms, were delivered to the

thalamus with stimulus intensities of 5-150µA. The response to the first stimulus

in the pair was used to analyze the trial-to-trial variability, while the relative re-

sponses to the two stimuli were used to study the nonlinear dynamics. The 150ms

inter-stimulus interval was chosen because it most reliably activated the facilitation

described in Chapter 3.

6.2.5 Electrophysiology analysis

Single-unit activity was recorded in the thalamus to quantify the effects of depolariza-

tion on the firing statistics of the thalamic neurons. The electrophysiology methods

are described in more detail in Appendix A. Bursts were identified as a collection

of two or more spikes with inter-spike intervals less than four milliseconds and pre-

ceded by a 100 millisecon inter-spike interval [164]. Only well isolated units were used

for the bursting analysis to prevent confusion of bursting with coincident multi-unit

activity.

The quantify the activity level of the cells, event rate was used in place of firing

rate, where a lone spike and a burst were each considered a single event. This was

to distinguish between a cell firing five tonic spikes per second and another that

produced a single burst of five spikes once per second, both of which would have an

average firing rate of five Hz. Using the event rate to quantify activity levels, the cell

firing tonic spikes would produce five events per second, while the bursting cell would
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produce one event per second.

Finally, the bursting percentage was calculated as the proportion of events that

were bursts. A simple upper bound can be placed on the burst percentage as a

function of the event rate when modeled as a Poisson process. An event can only be

a burst if the inter-event interval is greater than 100 milliseconds. In this way, the

maximum possible burst percentage, B, is given by the proportion of inter-stimulus

intervals greater than 100 milliseconds, as follows:

B =

∫ ∞
0.1

λ exp(−λt)dt = exp(−0.1λ) (30)

where λ is the event rate of the homogeneous Poisson process in units of Hertz.

This upper bound is plotted in figure 6.3(c) for comparison with the experimentally

determined relationship between burst percentage and event rate.

6.2.6 VSD analysis

The VSD analysis in this chapter was performed identically to that of previous chap-

ters. Only the temporal VSD signal, averaged spatially within the topographically

matched cortical column, was used to characterize cortical response in this work.

6.3 Results

The desynchronized state in cortex has been classically identified from the local field

potential (LFP) or electro-encephalogram (EEG), as a transition from high ampli-

tude, low frequency oscillations to a low amplitude, high frequency signal [43, 160].

Previous work in the rodent vibrissa system has shown that thalamic depolarization is

sufficient to generate a desynchronized state in cortex [159]. Here, we experimentally

measure the changes in thalamic firing statistics in the transition to a desynchronized

thalamocortical state, and quantify the effect of state on the nonlinear dynamics of

the cortical response to thalamic microstimulation.
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6.3.1 Thalamic depolarization leads to desynchronized state in-vivo

In line with previous work in the rodent vibrissa system, we first verified that opto-

genetic depolarization of the thalamus produced the desynchronized state in cortex.

An example is shown in figure 6.1. An “optrode” was positioned in the VPM thala-

mus and a separate electrode was positioned in layer 4 of the downstream primary

somatosensory cortex. Under anesthesia, the spontaneous firing rate of the VPM

neurons was low, as in figure 6.1. However, the delivery of blue light, indicated by

the ramp in figure 6.1(a), depolarized the thalamic neurons by opening the ChR2

channels, driving an increase in the firing rate. There was a concomitant increase in

the firing rate of the downstream multi-unit activity in cortex and decrease in power

of the low frequency component of the cortical LFP. This is quantified in 6.1(b) at

varying light intensities. As the thalamic firing rate increased, the low frequency

power in the cortical LFP decreased (left) while the high frequency power (middle)

remained constant. This resulted in an increase in the ratio of high frequency power

to lower frequency power in the cortical LFP, which is characteristic of the desynchro-

nized state in cortex and consistent with previous work in this pathway [159, 160, 43]

and others [65, 157]. However, the associated firing properties of the thalamus in the

desynchronized state have not been explicitly characterized.

6.3.2 Depolarization reduces spontaneous and stimulus-driven bursting

The thalamus is known to operate in two different modes: tonic firing and burst firing.

The distinct firing properties in these two states are believed to have significant impact

on the functional neural coding of sensory stimuli [177, 111] and relate to cortical

state. The tonic firing mode in the thalamus is associated with the desynchronized

state in cortex, and characterized by relatively high firing rates (>10Hz) and Poisson

timing statistics [54]. In the burst firing mode, however, the neurons are likely to

fire bursts of action potentials, defined as a cluster of two or more spikes in a single
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Figure 6.1: Optogenetic control of thalamic state. (a) Using a ramp light stimulus
(top) in the thalamus, ChR2 neurons are driven at an increased firing rate. This
drives an increased firing rate in the simultaneously recorded cortical neuron and
a desynchronization in the cortical LFP. (b) The desynchronization is characterized
by a drop in the low frequency content in the cortical LFP (left), but no change in
the high frequency content (middle). This leads to an increase in the ratio of high
frequency power to low frequency power as a function of the thalamic firing rate
(right).
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neuron having inter-spike intervals less than four milliseconds [164].

Examples of the tonic and burst firing modes are shown in figure 6.2. Under

anesthesia, the VPM neurons were principally in the burst firing mode, as in the

top portion of figure 6.2(a) where the neuron fires classically defined bursts of spikes.

Using the same experimental setup as before, a fiber optic attached to the electrode

was used to deliver a constant amount of light to chronically depolarize the thalamic

neuron and push it into the tonic firing mode, as in the bottom portion of figure 6.2(a).

To further illustrate the difference in firing statistics between these two modes, we

analyzed the inter-spike interval distributions. For each spike, the time since the

previous spike (previous ISI) and the time until the next spike (next ISI) are plotted

against each other in figure 6.2(b). Within these axes, the red boxes indicate a

classically defined burst, where the box in the lower right corner signifies the start of

a burst with a long (>100ms) previous ISI followed a short (<4ms) ISI, and the box

in the lower left corner contains any subsequent spikes in the burst. In the burst firing

mode, a large portion of the spikes (52% in this example) fall within the deliminated

burst regions. The tonic firing mode, however, has a much smaller proportion of

spikes in the burst regions, and instead the majority of the spikes lie in a cloud along

the diagonal of the axes, which is typical of Poisson firing statistics.

Through precise optogenetic control of thalamic depolarization, we tested whether

the tonic and burst firing modes formed two distinct states, or rather if they repre-

sented two ends of a continuum. To do so, we used the stabilized step function opsin

(SSFO) to precisely and systematically vary the depolarization of the thalamic neu-

rons. The SSFO channel has a long time constant (approximately 30 minutes) to

close, making it a nearly perfect integrator of light that directly mapped the light

exposure to a depolarizing inward current [212]. In this way, we delivered a train of

brief, low intensity light pulses through the optical fiber at 0.2Hz, or one pulse every

five seconds. Each pulse of light slightly increased the depolarization of the neuron,
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Figure 6.2: Depolarization of the thalamus eliminates bursting. (a) Top: Under
anesthesia, thalamic neurons spontaneously burst, firing multiple action potentials in
quick succession. Bottom: When depolarized through optogenetic manipulation, the
thalamic neurons switch to a tonic firing mode. (b) For each spike, the interspike
interval to the previous spike is plotted against the interspike interval to the next
spike. The red boxes outline spikes that could make up a burst. In the anesthetized
state (control, left), the proportion of spikes that make up bursts is 52%. When
depolarized (right), the majority of spikes occur in tonic firing, and very few (3%)
occur during bursts.
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with the firing rate and burst percentage computed during each five second interval.

An example is shown in figure 6.3, with the raw voltage trace on the bottom of panel

(a) and a histogram (one second bins) of the spiking activity on the top. As the light

pulses continued, and more of the SSFO channels in the cell opened, the firing rate

steadily increased.

Within each five second interval, the event rate and burst percentage were calcu-

lated. The event rate was used instead of the firing rate, such that a burst of spikes,

regardless of the number of spikes in the burst, and a single tonic spikes each counted

as a single event. The burst percentage was computed as ratio of the number of burst

events to the total number of events. An example of the relationship between burst

percentage and event rate is shown in figure 6.3(b). As the cell received more pulses

of light and the event rate increased, the burst percentage decreased with an expo-

nential relationship. This trend was consistent across cells for both ChR2 and SSFO

stimulation (ChR2: 6 cells, SSFO: 2 cells, N=7 animals total), with the exponential

fit to each cell (gray) and the fit to the compiled data across all cells (black) shown

in figure 6.3(c). For comparison, the red line indicates the upper bound on burst

percentage, as a function of event rate, assuming Poisson event statistics (i.e. every

event with inter-event interval >100ms produced a burst and inter-event intervals

were exponentially distributed). The average relationship across cells was far below

the upper bound, such that, even for the lowest event rate, the occurrence of a burst

was not certain. And further, the continuous relationship between burst percentage

and event rate suggests that the tonic and burst firing modes occupy the two ex-

tremes of a continuum. Even so, the effect of the tonic and burst firing modes on the

propagation of neural activity in the thalamocortical circuit remains unknown.
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Figure 6.3: Continuous transition from burst to tonic firing modes. (a) An example
spike histogram (top) and raw trace (bottom) of a neuron with a SSFO illustrate
the transition from burst mode to tonic firing. The long time constant of the SSFO
enabled the brief, low intensity light pulses to be perfectly integrated and gradually
increase the depolarization of the cell. (b) The burst percentage decreases according
to an exponential relationship with the firing rate of the neuron. (c) This trend is
consistent across cells.
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6.3.3 State control of the cortical response to thalamic microstimulation

Using ChR2 and the SSFO, we controlled the relative depolarization of the thala-

mus to directly investigate the effect on activity propagation. Voltage sensitive dye

imaging (VSDI) was used to record the cortical response to thalamic microstimula-

tion in the baseline anesthetized state (control) and the optogenetically depolarized

state. From the work in the previous chapters, it has been shown that thalamic mi-

crostimulation induces a strongly nonlinear response in cortex, characterized by high

trial-to-trial variability at threshold (Chapter 2) and amplitude-dependent, biomdal

nonlinear dynamics for pairs of stimuli (Chapters 3 and 4). The cause of the vari-

ability was due to the extreme synchronization of thalamic microstimulation, while

evidence suggested that the paired pulse facilitation was caused by thalamic bursting.

By shifting the thalamus into a depolarized state, we directly modified the prevalence

for bursting and the baseline level of synchronization, and investigated the effect on

the propagation of microstimulation-induced neural activity.

6.3.4 Depolarization of the thalamus reduces trial-to-trial variability in
the cortical response

First, the input-output relationship was determined by varying the stimulus intensity

of a single microstimulation pulse delivered to the thalamus and recording the am-

plitude of the downstream cortical response on a trial-to-trial basis. By eliminating

bursting in the depolarized state, we expected a reduction in the “all-or-none” re-

sponse in cortex, leading to a lower sensitivity in the nonlinear input-output response

curve and lower trial-to-trial variability at threshold. Instead, as shown by the exam-

ple in figure 6.4(a), the input-ouput relationship was not changed between the control

(black) and depolarized (blue) states. In each case, the cortical response amplitude

was a saturating nonlinear function of the input stimulus intensity. There was a slight

trend for the depolarized state exhibiting a slightly lower threshold current, but this

was not significant across experiments (N=4, p=0.65), as displayed in figure 6.4(b).

147



www.manaraa.com

Mean

Amplitude

of Cortical

Response

(∆F/F
0
 x10-3)

0

2

4

Current

(µA)

50 100

Current

(µA)

50 100

Amplitude

Variability

of Cortical

Reponse

(∆F/F
0
 x10-3)

1

1.5

0.5

Control

Depolarized

Control

Depolarized

(a)

(c)

Control Depolarized

Control Depolarized

1

2

0

40

80

0

Threshold

Current

(µA)

Peak

Variability

(∆F/F
0
 x10-3)

(b)

(d)
p = 0.02

p = 0.65

Figure 6.4: Thalamic depolarization reduces cortical trial to trial variability in re-
sponse to thalamic microstimulation. (a) Example of the mean amplitude of the
cortical response, as measured through VSDI, to increasing strength of thalamic mi-
crostimulation. The static nonlinearity was unchanged by optogenetically mediated
depolarization of the thalamus. (b) The threshold stimulus intensity was not sig-
nificantly changed between the control and depolarized states. (c) The trial-to-trial
variability peaked at the threshold response amplitude, but was decreased in the
depolarized condition. (d) The peak variability was significantly reduced in the de-
polarized condition.
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The trial-to-trial variability, however, was changed across the control and depolar-

ized states. In figure 6.4(c), the standard deviation of the response amplitude across

trials is plotted as a function of the input stimulus intensity. Consistent with the re-

sults of Chapter 2, there was a large increase in variability at the threshold stimulus

intensity in the control state (black). In the depolarized state (blue), the variability

still peaked at the threshold stimulus intensity, but the overall amount of variability

was significantly reduced. This decrease in the peak variability was consistent across

animals (N=4, p=0.02), as shown in figure 6.4(d). Per the results in Chapter 5, the

reduction in trial-to-trial variability will impact the design of surrogate sensory in-

puts, and may improve the overall discriminability of the cortical response amplitudes

evoked by thalamic microstimulation.

6.3.5 Depolarization of the thalamus eliminated nonlinear facilitation for
thalamic micrstimulation

In addition to modulating the reliability of the cortical response, thalamic state is

believed to play a large role in the nonlinear dynamics of the cortical response [170].

Here we explicitly measured the nonlinear cortical response to pairs of thalamic mi-

crostimulation in the burst and tonic firing modes. Consistent with previous work

(see Chapter 3 and 4), the cortical response to thalamic microstimulation exhibited

bimodal nonlinear dynamics (figure 6.5(a)-(c)). In response to simple pairs of stimuli

with increasing stimulus intensity, the nonlinear dynamics shifted from facilitation to

suppression. For instance, in the example in figure 6.5(a), the cortical response to

the second 40µA stimulus was facilitated relative to the response to the first 40µA

stimulus, whereas the response to the second 100µA stimulus was strongly suppressed

relative to the first. By plotting the response to the second stimulus relative to the

response to the first on a single trial basis, as in figure 6.5(b), the evolution of the

nonlinear dynamics becomes clear. In the lower left corner of the axes, there were

no significant dynamics as the response to each stimulus was negligible. For slightly

149



www.manaraa.com

higher stimulus intensities, the response to the second stimulus was consistently fa-

cilitated across trials, forming a cluster in the upper left portion of the axes. For

the highest stimulus intensities, the response to the second stimulus was consistently

suppressed across trials, resulting in a cluster in the lower right portion of the axes.

These trends were again reliable across experiments. All data across three animals is

presented in figure 6.5(c), with the data from each experiment normalized relative to

the maximum response amplitude within that experiment.

If the facilitation was caused by thalamic bursting, mediated by T-type calcium

channels, then the depolarization associated with shifting the thalamocortical circuit

into the desynchronized state should eliminate or reduce the facilitation dynamics.

Indeed, this was the case. Figures 6.5(d) and (e) present the matched experiment to

panels (a) and (b), but under optogenetic depolarization. In this case, regardless of

the stimulus intensity or response amplitude, the response to the second stimulus was

suppressed relative to the response to the first. This occurred reliably across trials and

experiments, as the overwhelming majority of data points fell below the unity line in

figures 6.5(e) and (f). In summary, by manipulating the state of the thalamus, and the

associated bursting and synchronization, the nonlinear propagation of neural activity

within the thalamocortical circuit was significantly altered, and has implications for

the design of surrogate stimuli and the control of neural activity in complex neural

circuits.

6.4 Discussion

Using voltage sensitive dye imaging and optogenetic control of the thalamic depo-

larization, we characterized the propagation of neural activity in response thalamic

microstimulation during the tonic and burst firing modes of the thalamus. First,

we characterized the firing statistics of the tonic and burst firing modes. Consistent

with previous reports, the tonic firing mode consisted of high firing rates and few
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Figure 6.5: Thalamic depolarization eliminates paired-pulse facilitation. (a) Exam-
ple of the mean cortical response, as measured through VSDI, to pairs of thalamic
microstimuli with increasing strength. Facilitation occurs at sub-threshold currents,
whereas suppression characterizes supra-threshold currents in the control state. (b)
As the current is increased (colors from blue to red), the dynamics transition from fa-
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as in (b), but with data across three animals. The data are normalized with respect to
the maximum response amplitude within that experiment. (d) Example of the mean
cortical response, as measured through VSDI, to pairs of thalamic microstimuli with
increasing strength. Facilitation occurs at sub-threshold currents, whereas suppres-
sion characterizes supra-threshold currents in the control state. (e) As the current
is increased (colors from blue to red), the cortical response undergoes paired-pulse
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bursts, whereas the burst firing mode had a lower overall firing rate, but with a high

burst percentage. However, through systematic and precise modulation of thalamic

depolarization, we found that the tonic and burst firing modes form two extremes of

a continuum, such that the neurons smoothly transitioned from burst firing to tonic

firing. Upon demonstrating optogenetic control of thalamocortical state, we charac-

terized the trial-to-trial variability and nonlinear dynamics of the cortical response

to thalamic microstimulation in the tonic and burst firing modes. In the burst firing

mode (i.e. the control anesthetized state), thalamic microstimulation activated cor-

tex as described in the previous chapters, exhibiting peak trial-to-trial variability at

the threshold response amplitude and bimodal nonlinear dynamics with facilitation

of sub-threshold inputs and suppression of supra-threshold inputs. In the optogenet-

ically mediated tonic firing mode, however, the peak in trial-to-trial variability was

significantly reduced and the facilitation dynamics were eliminated.

Classically, the statistics of neural firing have been extensively explored under

naturally occurring burst and tonic states in the anesthetized [164, 108, 107] and

awake [54, 161, 43, 160, 159] animal. In these study, dynamic transitions from the

burst to tonic firing modes occurred naturally or at the onset of a salient stimulus.

This dynamic transition has lead many to believe that the thalamus controls not only

“how much”, but also “what type” of information is transmitted to cortex [177, 170].

Specifically, the burst firing mode has been shown to be strongly detectable and highly

reliable, whereas the tonic firing mode may be responsible for encoding the more fine

details of the stimulus [108, 107].

Prior to optogenetics, the only way to control thalamocortical state was through

the activation of the natural neuromodulatory arousal mechanisms in the brain [34, 65,

111]. In this way, the transition from burst to tonic firing could be made quickly and

transiently, allowing the study of stimulus-evoked cortical activity on short timescales.

However, with the advent of optogenetics, it has become possible to quickly and easily
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shift the thalamocortical state bidirectionally. By activating the reticular thalamus, or

directly hyperpolarizing the thalamus, burst percentage was increased in the thalamus

and spindles were generated in the local field potential in cortex [76]. On the other

hand, direct depolarization of the thalamus facilitated the transition from burst to

tonic firing rate, producing the classically described “desynchronized” state [159].

Yet, in neither case was the effect on the propagation of stimulus-evoked activity

quantified.

In the previous work investigating stimulus-evoked activity under control of state,

the cortical response was significantly reduced in amplitude [153], but more reliable

across trials [65]. From this, we hypothesized that the tonic firing mode would signif-

icantly shift the neurometric tuning curve to the right, while extending the dynamic

range and increasing reliability across trials. From the perspective of an ideal ob-

server, these results would be consistent with an improved discriminability of the

cortical response. However, we did not observe an appreciable change in the neu-

rometric tuning curve of cortical response amplitude as a function of the thalamic

microstimulation stimulus intensity. This may have been due to the extreme syn-

chrony with which thalamic microstimulation is believed to activate neurons locally

around the electrode tip (recall Chapter 2). But we did, in fact, find a significant re-

duction in the peak trial-to-trial variability, consistent with out prior hypothesis. The

peak in trial-to-trial variability for the cortical response to thalamic microstimulation

was likely due to spontaneous transitions between the up and down states known

to occur in the anesthetized [57] or quiescent [153, 61] states. By depolarizing the

thalamus, the time spent in the down state was likely significantly reduced, leading

to an overall increase in reliability of the cortical response.

Further, we hypothesized that the depolarizing the thalamus and driving the tonic

firing mode would eliminate the nonlinear paired pulse facilitation observed previously

(recall Chapter 3) for thalamic microstimulation, as evidence suggested that it was
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mediated by thalamic bursts. Indeed, we found that thalamic depolarization elimi-

nated the facilitation dynamics for sub-threshold thalamic microstimulation. This is

consistent with previous work, as Castro-alamancos showed a reduction in the paired

pulse facilitation of the cortical response to thalamic microstimulation during natural

transitions of an awake animal between quiescent and active states [33].

Throughout the literature, the burst and tonic firing states are referred to as sepa-

rate and discrete states (although Mukherjee and Kaplan report a range of burstiness

[134]). However, our electrophysiological results in the thalamus suggest that classi-

cally described burst and tonic firing states form the extremes of a continuum under

the direct control of thalamic depolarization. As the thalamus was gradually depo-

larized, we observed a smooth, and exponentially decreasing, relationship between

burst percentage and event rate. From the perspective of the thalamic neuron, this

may not be surprising as the burst percentage should be a function of the relative

amount of time spent in the hypopolarized state required to de-inactivate the T-type

calcium channels. And yet, the previous literature seems to indicate two predomi-

nant states. If tonic and burst firing modes truly do represent two distinct states, the

transition between states must be controlled outside of the thalamus, such as in the

neuromodulatory centers of the brain stem [34] or forebrain [65], and likely involves

the modulation of multiple brain regions simultaneously.

The overall shift in trial-to-trial variability and nonlinear dynamics of the cortical

response to thalamic microstimulation has profound impact on the development of

sensory prostheses. Peripheral implementations of sensory prostheses, such as the

cochlear implant and retinal prosthesis, can use a single encoding rule for mapping

sensory stimuli to patterns of artificial stimulation as fluctuations of state do not affect

these peripheral structures strongly. A central nervous system prosthesis, however,

would require a dynamic modulation of the encoding rule, as the state of the neural
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circuit would continuously change based on the arousal of the individual and signifi-

cantly alter the propagation of information to downstream structures. This suggests

the use of online monitoring of brain state [22] in order to switch between encoding

rules. While certainly more complicated, dynamically switching the encoding rule

based upon the underlying brain state may allow the delivery of contextual surrogate

inputs, such as specifically designed “detection” or “discrimination” cues. More gen-

erally, the results described here are the most complete description of stimulus-evoked

activity under the control of thalamocortical state and inform the understanding of

neural circuit information processing, with future work addressing the functional rel-

evance of state transitions for sensory processing of naturalistic sensory stimuli in the

awake animal.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

The goal of this project was to characterize, model, and control the neural circuit

response to artificial stimuli and inform the design of surrogate inputs for sensory

prosthesis applications. Our approach is summarized in figure 7.1. For patterns of

sensory stimulation, the dynamics of the neural circuit, H(x), map these inputs to

spatiotemporal patterns of activity in cortex. However, given that previous work has

suggested that sensory and artificial inputs drive neural circuits with distinct nonlin-

ear properties [112, 119], we first characterized the difference between the neuronal

dynamics in response to sensory, H(x), and artificial stimuli, H∗(x).

In Chapter 2, the trial-to-trial variability and spatial spread of the cortical re-

sponse to whisker, electrical, and optogenetic inputs were quantified using voltage

sensitive dye imaging (VSDI). Importantly, both the trial-to-trial variability and spa-

tial spread are crucial variables for quantifying the discriminability of information

encoded by the downstream neural response. All stimuli produced monotonically

increasing response amplitudes as the stimulus intensity increased. However, the re-

sponse properties diverged from here. We found that the trial-to-trial variability of

the cortical response to whisker stimuli increased linearly with the stimulus intensity

and response amplitude, such that strong responses were highly variable across tri-

als. The response to strong electrical and optogenetic inputs, on the other hand, was

highly reliable across trials. Instead, the peak in the trial-to-trial variability occurred

at the threshold stimulus intensity and response amplitude. Whereas the trend in

variability was similar for the two types of artificial stimuli, the spatial spread was

more similar between whisker and optogenetic inputs, which each produced focal
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Figure 7.1: Nonlinear propagation of activity across neural circuits. Diagram illus-
trating the goals and acheivements of the thesis. First, the neural circuit response
to microstimulation was characterized and modeled. Then, stimulus design was em-
ployed to overcome the distinct neural response properties to thalamic microstimula-
tion, as compared to natural sensory stimuli. Finally, the role of state in governing
the nonlienar dynamics was explored through optogenetic control.

spatial activiation in cortex. Electrical stimulation produced a comparatively large

activation in cortex, with the spread increasing for larger response amplitudes.

In this way, the three stimulus types each differentially activated the neural cir-

cuit. Informed by previous literature, we sought to determine the mechanism by

which the different stimulus types engaged the neural circuit. Specifically, a large

body of literature suggests that the synchrony of population neural activity is dy-

namically modulated during the processing and encoding of sensory stimuli [24, 177],

whereas electrical and optogenetic stimuli are believed to strongly synchronize the

neurons that they activate and merely recruit more neurons as the electric field or

light spreads through the tissue at higher stimulus intensities. Thus, we used a com-

putational network model of the thalamocortical circuit to allow direct manipulation

of the magnitude and synchrony of population neural activity, two important variables

that were not independently accessible experimentally. Through model simulations,

we found that a fixed, high synchrony in the population activity reproduced the peak

trial-to-trial variability observed with electrical and optogenetic inputs, but variations
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in synchrony for a fixed magnitude of population activity mimicked the trends ob-

served with whisker stimuli. Spatially, the extreme synchrony and mixed stimulation

of axons and cell bodies produced increasing spread in the cortical response, similar

to the observations for electrical stimulation of the thalamus. Through the combined

experimental and computational approach, we demonstrated, using two simple case

studies, that the neural response to artificial inputs is distinct from the neural re-

sponse to natural sensory inputs, and further hypothesize that the mechanism is the

extremely high, and potentially pathological, synchronization of population activity

induced by electrical and optogenetic stimuli.

The results in Chapter 2 described the nonlinear response to single stimuli of in-

creasing intensity, whereas Chapters 3 and 4 extend the characterization of the neural

response to temporal patterns of sensory and artificial stimuli. First, in Chapter 3,

a simple “paired pulse” paradigm was used to explore the nonlinear dynamics of the

cortical response, and later in Chapter 4 more complicated patterns were used. In

the simple paired pulse paradigm, the response to a second stimulus is compared with

the response to the first. Under conditions of linearity, the response to the second

stimulus could be predicted through the superposition of the response to the first

stimulus and a temporally shifted copy. With nonlinear dynamics, however, the re-

sponse to the second stimulus would be facilitated or suppressed relative to the linear

expectation from the response to the first stimulus. Classically, the cortical response

to sensory stimuli has been characterized as nonlinear suppression in the paired pulse

paradigm. Using VSDI to record the spatiotemporal cortical response, we found that

whisker stimuli elicited paired pulse suppression in cortex, with the duration of the

suppression increasing for higher velocity whisker deflections. For electrical stimula-

tion, similar paired pulse suppression was observed for high current intensities. But

at sub-threshold stimulus intensities, a profound facilitation of the response to the

second stimulus occurred. Additionally, the timescale of the facilitation was distinct
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from the suppression observed with whisker stimuli and supra-threshold electrical

stimuli, as facilitation only occurred for inter-stimulus intervals between 100 and 200

milliseconds. Finally, the spatial spread associated with the facilitation dynamics was

dramatically sharpened relative to the response to a single supra-threshold electrical

stimulus. This evidence suggests that electrical stimulation of the thalamus recruits

a dynamical mode that is distinct from sensory stimuli, and results in amplitude-

dependent, bimodal nonlinear dynamics in the cortical response.

To investigate the mechanism of the facilitation, we used optogenetic stimuli to al-

low simultaneous recording of single unit activity in the thalamus and the spatiotem-

poral cortical response. Optogenetic stimuli delivered to the thalamus produced a

similar bimodal nonlinear response in cortex to electrical stimuli, with suppression

occurring for supra-threshold inputs and facilitation for sub-threshold inputs. In re-

sponse to the same pairs of optogenetic stimuli, the response of single units in the

thalamus exhibited paired pulse facilitation at all stimulus intensities. From this,

we hypothesize that the facilitation was a thalamic phenomenon, mediated by post-

inhibitory calcium bursts, and that the suppression was a cortical phenomenon caused

by the engagment of feedforward inhibition.

In Chapter 4, we performed nonlinear system identification on the cortical re-

sponse to temporal patterns of stimulation oo further model the bimodal nonlinear

dynamics, H∗(x). The simple paired stimulus paradigm used in Chapter 3 was only

able to probe second order nonlinear dynamics. In order to probe higher order nonlin-

earities, and more efficiently identify the nonlinear dynamics, we used a random am-

plitude Poisson (RAP) stimulus train [208], where the stimulus times were drawn from

a homogeneous Poisson process, and the stimulus intensities varied uniformly. After

training on stimulus-response data, a traditional Volterra series black box model per-

formed poorly in predicting the neural response to an out-of-sample stimulus-response
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pair, indicating a failure to accurately capture the system dynamics. We then de-

veloped a phenomenological model in order to specifically include certain nonlinear

features of the cortical response that we had observed experimentally in Chapters 2

and 3. By specifically including two dynamical stages in series, the phenomenological

model had significantly improved predictive capability as compared to the Volterra

model. Simulations with the phenomenological model further supported the previous

conclusions in Chapters 2 and 3, suggesting that thalamic microstimulation of in-

creasing intensity recruits a linearly increasing number of thalamic neurons, but that

these neurons project in a highly nonlinear manner to downstream cortex through

the extreme synchrony of the population activity.

Ultimately, through the combined experimental and modeling approaches, Chap-

ters 2, 3, and 4 provide an extensive characterization of the nonlinear neural circuit

dynamics, H∗(x), in response to thalamic microstimulation and how this deviates from

the neural circuit response to natural sensory stimuli. Two crucial differences in the

neural response were the trial-to-trial variability and the spatial spread of the cortical

response. In Chapter 5, we specifically designed thalamic microstimuli to overcome

these differences in circuit engagement. The previous modeling work in Chapter 2

suggested that the increased spatial spread observed in cortex was due to thalamic

microstimulation activating axons in addition to cell bodies, consistent with previous

evidence in the literature [83]. Using a biophysical model, McIntyre and Grill hypoth-

esized that variations in waveform shape could shift the relative recruitment of axons

vs. cell bodies, leading electrical stimuli to activate neural circuits more specifically

[123]. We directly tested this prediction by delivering symmetric and asymmetric,

cathode-leading biphasic electrical stimuli to the thalamus and recording the spatial

response in downstream cortex. We found that symmetric stimuli produced a topo-

graphically misaligned cortical response, consistent with the preferential stimulation
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of axons in the thalamus. Using asymmetric stimuli, the topographic alignment be-

tween the cortical response and the electrophysiologically identified location of the

thalamic electrode was significantly improved, but at the expense of requiring greater

current intensity to achieve the same neural response amplitude.

By specifically activating cell bodies, as opposed to axons, electrical stimulation

surrogate inputs more faithfully adhered to the underlying topography of the early

sensory pathways, thus improving the spatial discriminability of an ideal observer

of the cortical response. Information could also be encoded in the amplitude of the

cortical response, where the trial-to-trial variability, as a function of the response am-

plitude, would determine the performance of an ideal observer. The distinct trends in

trial-to-trial variability for sensory and artificial stimuli made the design of surrogate

sensory inputs non-trivial. In the latter portion of Chapter 5, we performed optimal

signal set design to maximize the discriminability of the cortical response amplitude as

a function of the stimulus intensity. Optimal signal set design is used in the communi-

cations literature to maximize information throughput of a noisy channel by choosing

the signal set that best separates the output distributions of the channel [103]. Using

a theoretical model of the cortical response to sensory and artificial stimuli based

on the experimental data in Chapter 2, we optimized the signal set (i.e. response

amplitudes) by maximizing an information theoretic distance between nearest neigh-

bor pairs of response distributions. The optimal signal sets for sensory stimuli and

artificial stimuli had equivalent average performance, suggesting that knowledge of

the nonlinear mappings can be used to overcome the distinct trends in the cortical

response. However, while the average performance was equivalent, portions of the

signal set were unused in the theoretical model of artificial stimuli, such that less

overall information was delivered to downstream cortex. Under a different optimiza-

tion scheme, where we maximized the minimum performance across all members of

the signal set [103], all signals within the set were used across each model. In this
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case, the performance for the model of artificial stimuli had higher performance for a

small signal set, but larger signal sets were decoded with greater performance under

the model of sensory stimuli. Under the assumptions of the theoretical framework,

this suggested that artificial stimuli provide highly detectable signals, but an ideal ob-

server of the downstream cortical activity would not be able to discriminate amongst

varying stimulus intensities. More generally, the results motivate the extension of

optimal signal set design to spatiotemporal patterns of surrogate inputs.

Through the design of the input stimuli, we exploited the properties of the neural

circuit to improve the discriminability of an ideal observer of the downstream neural

response. However, recent work [65], and longstanding hypotheses in the field [42],

suggest that neural circuits in the brain already dynamically switch states to opti-

mize not only “how much”, but also “what type” of information is transmitted to

downstream structures [177, 170], allowing the transmisison of both “detection” and

“discrimination” signals. In Chapter 7, we systematically and precisely controlled the

state of the thalamocortical circuit and characterized the propagation of artificially-

evoked neural activity. Optogenetic depolarization of the thalamus pushed the tha-

lamus from a burst firing mode to a tonic firing mode, which is classically associated

with the “desynchronized” cortical state. Moreover, through precise modulation of

the thalamic depolarization, we showed a smooth transition from burst to tonic firing,

suggesting a continuum rather than discrete states. Shifting to the depolarized state

significantly modified the nonlinear propagation of activity induced by thalamic mi-

crostimulation. In the depolarized state, the peak in trial-to-trial variability described

in Chapter 2 was significantly decreased and the facilitation portion of the bimodal

nonlinear dynamics was suppressed. In this way, the depolarized state made the tha-

lamocortical dynamics elicited by thalamic microstimulation, H∗(x), more similar to

those produced by natural sensory stimuli, H(x).

Together, the experimental and computational approach described above provides
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a complete description of the nonlinear dynamics of the thalamocortical circuit to ar-

tificial stimuli. More specifically, the results highlight the distinct neural response

properties for sensory and artificial stimuli and identify the extreme synchrony of

artificially generated neural responses as the primary mechanism of the differences.

Stimulus design was used to overcome the specific differences in the evoked response

to sensory and artificial stimuli and improve the functional relevance of the down-

stream surrogate sensory signals. Ultimately, the characterization, modeling, stimulus

design, and overall control of downstream neural activity documented in this thesis

closely mimics the process undertaken in the early, and continuing, development of the

cochlear implant [202], and stands to inform the development of sensory prostheses

with intervention sites in the central nervous system.

7.1 Application to sensory prostheses

While the cochlear implant has enjoyed great success, other sensory prostheses are

significantly less well developed. The retinal prosthesis is in clinical trials and has

restored limited vision to those that are otherwise blind [87], albeit not at the same

level of performance as the cochlear implant. Beyond the retinal prosthesis, few other

sensory prosthesis applications are beyond the concept stage.

A major reason for the relative success of the cochlear implant is the anatomy of

the neural interface. Within the cochlea, the auditory nerve interfaces with the hair

cells along a linear track, with high frequencies encoded near base and low frequencies

mapped to the apex. The one-dimensional topography along the coil of the cochlea

enables a relatively simple one-dimensional electrode interface and bio-mimetic en-

coding model, where sounds are separated into discrete frequency bands and encoded

by individual electrodes along the length of the array [201]. By comparison, the topo-

graphic alignment of the retina is two-dimensional. In this way, an extra dimension

163



www.manaraa.com

is needed for the electrode array, but it can still be designed in a planar array. In-

terfacing directly with the somatosensory periphery, however, is substantially more

difficult. Distal from the spinal cord, information from the sensory afferents trav-

els along a complicated network of nerves, each containing multi-modal information

(touch, pressure, temperature, pain, motor output, etc.). Thus, intervention in the

somatosensory periphery would require a complicated three-dimensional neural inter-

face, spanning a large portion of the human body. Further, the peripheral interface

must be designed to be robust to movement of the limbs/body that have retained, or

regained, function and movement.

For this reason and others, a significant portion of sensorimotor prosthesis de-

velopment has been focused in the central nervous system. In this way, the sensory

feedback neural interface can be co-located with the motor decoding neural interface,

creating a combined sensorimotor prosthesis [199]. However, the neural interface

would still need to be at least two-dimensional for a layered structure such as the

cortex, and three-dimensional in a globular region such as the somatosensory thala-

mus. In addition to the increased dimensionality of the interface, the work in this

thesis, along with previous work in the field, emphasizes the nonlinearities associated

with interfacing in the central nervous system. All encoding models currently in use

for the cochlear implant utilize linear dynamics, where the power in a particular fre-

quency band is used as the envelope to modulate the stimulus intensity on a given

electrode. From our results, however, the response of neural circuits in the central

nervous system would be highly nonlinear for temporal patterns of activity.

Our results specifically point toward the extreme synchrony generated by artificial

stimulation as accentuating the nonlinear properties of central nervous system neural

circuits. Whether the goal of the sensory prosthesis is to mimic natural sensory-evoked

neural responses, or merely to produce maximally discriminable neural responses, the

distinct ways in which artificial stimuli activate neural circuits must be included
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within the encoding model.

In general, two opportunities exist for the optimal design of the encoding model:

1) the base unit of stimulation and 2) the encoding rule mapping sensory signals to

patterns of the base stimulation unit. In this work, we performed very simple design

of the base unit of stimulation to overcome the limitations of the cortical response to

thalamic microstimulation; however, a much larger stimulus design space remains as

an open field of study. In particular, the design of a base unit of stimulation aimed

at reducing the stimulus-induced synchronization may simplify the encoding rule by

better mimicking natural sensory inputs. High frequency, multi-electrode stimulation

has been shown to desynchronize a neural population in vitro [191]. Using a high

frequency pulse train of increasing stimulus intensity may provide sufficiently strong

neural activation, but with reduced synchronization. Further, the rate of increase in

the stimulus intensity could be used to titrate the stimulus-induced synchronization.

Also, if optogenetics becomes a clinically viable solution, the stimulus design space

for optogenetic stimuli is far less restricted, since there is no analogous limitation to

charge balancing electrical stimuli. The optogenetic stimulus design problem would

additionally extend to the design of the kinetics of the light-sensitive channel.

In addition to the design of the base unit of stimulation, the encoding rule is

responsible for mapping the sensory information into a pattern of stimulation to

produce functionally relevant surrogate information in downstream neural structures.

In the central nervous system, the encoding rule will likely need to include knowledge

of the nonlinear response of the target neural circuit and the constantly changing

state. However, additional opportunities may exist to exploit beneficial properties of

the nonlinear dynamics or even directly control the state. For instance, the spatial

sharpening of the facilitation dynamics described in Chapter 3 illustrates a simple

example of how the dynamics may be exploited to improve information transmission.

If the facilitation dynamics could be engaged by a subthreshold “noise” stimulus
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provided through the electrode array, then the propagation dynamics could be shitfed

dynamically without triggering a confounding sensation. Similar use of “noise” stimuli

have been used in sensory neurophysiology to acheive modulation of the downstream

cortical response [23]. Finally, through modulation/control of the underlying state,

it may be possible to muliplex, or at least dynamically switch between, “detection”

and “discrimination” information by modulating neural circuit properties.

7.2 Applications towards microstimulation for other disor-
ders

While the cochlear implant is the only currently successful sensory prosthesis, elec-

trical stimulation is used clinically for a variety of other neuromodulation therapies.

The goal of any neuromodulatory therapy is to replace an aberrant pattern of activ-

ity with a physiological pattern, or at very least a synthetic pattern that eliminates

the pathological symptoms. The most well-known example is the use of deep brain

stimulation (DBS) to treat motor [49] and psychological [84] disorders.

Deep brain stimulators consist of a large macroelectrode inserted deep into the

brain and a stimulator that delivers high frequency (∼130Hz) stimulation across the

electrode. Recent work supports the hypothesis that DBS entrains the neural popu-

lation to the stimulation rate, with each stimulus pulse synchronizing the population

of neurons [124, 67]. However, through instilling this synthetic pattern, the stimula-

tion “regularizes” local neural activity, allowing normal motor control information to

propagate through the pathway [53].

The design of stimulation patterns for DBS is an active area of research, with ir-

regular patterns of stimulation potentially providing added benefits of greater symp-

tomatic relief or reduced power consumption [20]. Further improvement may be

obtained through global state modification of the pathological circuit. Physiological

patterns of neural activity in the basal ganglia are characterized by desynchronized,
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tonic firing [80], similar to the tonic firing mode of the somatosensory thalamus de-

scribed in Chapter 6. Extrapolating from the results in this thesis, chronic depolar-

ization of the basal ganglia may acheive the desynchronization necessary to restore

normal motor function. Thus, multichannel high frequency microstimulation (within

existing power constraints), or chronic depolarization through optogenetic control

[212], may enhance the therapeutic effect.

The nonlinear engagement of central nervous system circuits described in this the-

sis may also have applications for neuromodulatory therapies. For instance, electri-

cal stimulation of the thalamus produced profound suppression over long timescales.

Other studies, in concert with the work in this thesis, suggest that microstimulation

strongly engages feedforward inhibitory circuitry, which is a common motif across

neural circuits. A strategy for treating disorders of hyperactivity, such as epilepsy,

could be to engage the pathological circuit upstream of the aberrant activity and

utilize the anatomy to recruit long timescale inhibition through electrical stimulation

[97, 163, 187].

7.3 Interfacing with neural circuits: a framework for con-
trol

More generally, applications of artificial stimulation for sensory prostheses and neu-

romodulatory therapies rely on the ability to precisely control neural activity. This

thesis has performed the initial requisite characterization of the neural circuit dy-

namics to facilitate the generation of arbitrary patterns of neural activity through

artificial stimulation. Further, optogenetic techniques were used to control the un-

derlying state of the neural circuit under investigation. However, future directions

of this work should rely on the robust and quantitative methods of modern control

theory for controlling neural activity within the brain.

The field of neural control has been intensely investigated since the 1980s, where

167



www.manaraa.com

experimentalists and theorists alike have used a control theory framework for explor-

ing the control of the human body by the brain. A prime example is the study of

motor control [21], or how the brain activates distributed muscle groups in a coordi-

nated fashion to achieve complex movements of the arms, legs, or eyes. The physical

nature of the state variables, such as the position of the eyes or the velocity of the

arm, have aided the adoption of classical and modern control theory to study the

neural control of movement.

On the contrary, the principled control of neural activity on fast timescales is far

less well developed. With the advent of optogenetics, it is now possible to bidirec-

tionally control neural activity on fast timescales within the brain. Similarly, the

maturity of electrical stimulation techniques has ushered in a new era of clinical neu-

romodulation. Given these actuators, how can we design a framework for the control

of neural activity in the brain? What are the state variables we have access to? Here,

we propose three levels of abstraction for controlling neural activity in the brain:

1) control of neuronal variables, 2) control of information content, and 3) control of

operating modes.

The most obvious and fundamental variable of population neural activity is the

mean firing rate. At various stages within the brain, neuronal firing rates correlate

with motor activity [63], sensory information [86], and decision making [158]. Closed

loop control of population firing rates have previously been demonstrated in vitro

using multichannel microstimulation [191], and more recently through the use of op-

togenetics in vitro and in vivo [138]. By incorporating mathematical descriptions of

neuronal dynamics, such as those identified in this thesis, into a closed loop controller,

it may be possible to precisely control dynamic trajectories of population firing rate

with defined constraints on the response properties such as overshoot, rise time, etc.

Outside of population firing rate, higher order statistical properties could be con-

trolled within a closed loop paradigm. For instance, population synchrony would be
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a natural variable of population activity to control for experimental or therapeutic

applications.

More abstractly, closed loop control of neural activity could be also used to max-

imize information content in population activity. For instance, in Chapter 5, the

trial-to-trial variability largely determined the discriminability between cortical re-

sponse amplitudes within the optimal signal set design. Theoretically, closed loop

proportional and integral control could be used to significantly reduce steady state

error. Reducing the trial-to-trial variability through closed loop control of neural re-

sponse trajectories would further facilitate optimal signal set design, increasing the

amount of information that could be delivered to downstream neural circuits.

Finally, the underlying state of a neural circuit offers another variable for control.

In this work, we demonstrated simple open loop control of state by optogenetically

depolarizing the thalamus. However, global control of state would require a more

direct measurement of state to place under closed loop control. The goal of most

neuromodulatory therapies is to control the state of a neural circuit, and thus a prin-

cipled framework for closed loop control would have significant clinical impact. And

experimentally, the closed loop control of neural circuits would allow the systematic

interrogation of the various information processing states a neural circuit can assume.

In conclusion, the characterization, modeling, and design of artificial stimulation

techniques presented in this thesis directly informs the development of central ner-

vous system sensory prostheses. More generally, the results highlight the distinct

ways in which sensory and artificial stimuli activate neural circuits, mediated by the

differential synchronization of neural populations. Future directions of this work will

incorporate knowledge of the nonlinear dynamics of neural circuits for the closed loop

control of functionally relevant activity within the brain.
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APPENDIX A

GENERAL VSD METHODS

A.1 Surgery and preparation

Fourteen female adult albino rats (220-350g; Sprague Dawley, Charles River Labora-

tories, Wilmington, MA) were used in the study. All procedures were approved by

the Institutional Animal Care and Use Committee at the Georgia Institute of Tech-

nology, and were in agreement with guidelines established by the National Institutes

of Health. Briefly, female albino rats were sedated with 2% vaporized isoflurane and

anesthetized with sodium pentobarbital (50 mg/kg, i.p., initial dose); supplemental

doses were given as needed to maintain a surgical level of anesthesia, confirmed by

measurements of heart rate, respiration and eyelid/pedal reflexes to averse stimuli

(toe or tail pinch). In all experiments, body temperature was maintained at 37 ◦C by

a servo-controlled heating blanket (FHC, Bowdoinham, ME). After initial anesthesia,

the animal was mounted on a stereotactic device (Kopf Instruments, Tujunga, CA)

in preparation for the surgery and subsequent recordings. Atropine (0.5 mg/kg, s.c.)

was injected, and Lidocaine was applied to the tissue on top of the head. After the ini-

tial midline incision on the head, tissue and skin were resected, and connective tissue

was carefully removed. A craniotomy (∼ 3× 4mm) was made on the left hemisphere

over the barrel cortex (stereotactic coordinates: 1.0-4.0 mm caudal to the bregma,

and 3.5-7.0 mm lateral to the midline) and over the ventroposterior medial nucleus

(VPm) of the thalamus (2.0-4.0 mm caudal, 2.0-3.5mm lateral to the midline [149]).

A dam was constructed with dental acrylic around the craniotomy over the barrel cor-

tex to contain the voltage sensitive dye solution (RH1691, 1.5mg/ml, Optical Imaging

Ltd, Rehovot, Israel) for staining. Mineral oil was periodically applied to the cortical
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surface over VPm to keep the brain moist. After the recording session, the animal

was sacrificed with an overdose of sodium pentobarbital. A subset of the animals

were transcardially perfused with 4% paraformaldehyde, and their brains removed

for histologically producing the anatomical barrel cortex map.

A.2 VSD imaging

Voltage sensitive dye imaging was achieved by using a high speed, low noise camera

coupled with a tandem lens (MiCAM 2, SciMedia, Tokyo, Japan). After the cran-

iotomy over the barrel cortex, the dura mater was allowed to dry for 15 minutes [109].

The cortex was stained with dye RH1691 solution (1.5mg/mL; Optical Imaging) for

two hours, during which the dye solution was circulated every 5 minutes to prevent

the cerebral spinal fluid from impeding the staining. After staining, saline was applied

generously to wash off the dye residue. Then the dam was filled with saline and a

glass cover slide was placed on top of the dam to prevent the saline from vaporizing.

The dye was excited by a 150W halogen lamp filtered to pass wavelengths only in the

615-645nm band. In all experiments, a 1.0x magnification lens was used as the ob-

jective lens in conjunction with a 0.63x condenser lens to provide 1.6x magnification,

forming a tandem lens as shown in Figure A.1(a). Twenty trials of VSD data were

collected for each stimulus and they were averaged offline for the data analysis (see

response analysis section below).

A.3 Electrophysiological recordings

Extracellular recordings in the VPm were obtained by using single tungsten micro-

electrodes (∼1MOhm, 75um in diameter, FHC, Bowdoinham, ME). The detailed

procedure was described previously [196]. Briefly, after the craniotomy, a tungsten mi-

croelectrode was slowly advanced into VPm using a hydraulic micropositioner (Kopf

Instruments, Tujunga, CA). During electrode advancement through VPm, individual

whiskers were stimulated manually to identify the principal whisker (PW), i.e. the
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Figure A.1: Voltage Sensitive dye imaging of cortical activation in response to tha-
lamic activation and whisker deflection. (a) Diagram of optical imaging setup. (b)
Example of cortical response to a punctate deflection of whisker D2 (sensory stim-
ulation, S-Stim). (c) Example of barrel columns shown in a CO stained brain slice.
White traces are contours of the barrel columns shown in (d). (d) Barrel mapping by
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Figure A.2: Functional validation of thalamic electrode placement. (a) A typical
example of single-unit activity recorded in VPm (left) and spike waveforms (right).
(b) The peri-stimulus time histograms (PSTHs) of a VPm cell in response to punctate
deflection of whisker C2, D1, D2, D3, E1, E2, and E3 (binsize = 2ms). (c) Selection
of principal whisker (PW) was confirmed by the fact that PW evoked stronger spiking
activity than adjacent whiskers (AW) (p=0.01, Mann-Whitney U-test).

whisker that evokes the strongest response. In a subset of experiments, the single-

unit responses to the principal whisker and the adjacent whiskers were recorded, a

typical example of which is shown in Figure A.2. We aimed to recruit barrel fields

in the E and D rows, which are located close to the center of imaging field in our

preparation. In 14 experiments, the D1 barreloid was accessed 6 times, the D2 bar-

reloid was accessed once, the D3 barreloid was accessed 5 times, the E1 barreloid

was accessed once, and the E3 barreloid was accessed once. Neuronal signals were

amplified, band-pass filtered (500-5kHz), digitized at 30 kHz/channel, and collected

using a 96-channel data-acquisition system (Blackrock Microsytems, Salt Lake city,

UT, USA).
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A.4 Thalamic microstimulation

After the principal whisker was identified, the thalamic electrode was used to deliver

single electrical current pulses to evoke cortical responses in the somatosensory path-

way. The electrical stimuli were created using a digital stimulus generator (Model:

DS8000, WPI Inc., Sarasota, Florida) and delivered using a digital linear stimulus

isolator (Model: DLS 100, WPI Inc., Sarasota, Florida) acting in current source

mode. Additionally, a fast switching relay was used to prevent charge accumulation

on the electrode tip. All individual electrical stimuli were charge balanced. Three

type of stimulus waveforms were used in this study: 1) a cathode-leading, symmetric

biphasic waveform of 200 microseconds duration per phase (Symm), 2) a cathode-

leading, asymmetric biphasic waveform with 1 millisecond of cathodal duration and

200 microseconds of anodal duration (ASymC), and 3) an anode-leading, asymmetric

biphasic waveform with 1 millisecond of anodal duration and 200 microseconds of

cathodal duration (ASymA). In Chapter 5, the asymmetry of the cathode-leading

asymmetric, i.e. ASymC, waveform was systematically changed to more precisely

determine the effect of the asymmetry on the specificity of electrical stimulation.

Asymmetry was defined as the ratio of the duration of the first phase to the duration

of the second phase minus one, such that the Symm waveform had an asymmetry of

zero and the ASymC waveform had an asymmetry of four. Waveforms were delivered

over a range of current amplitudes (30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 150

microamps). In each experiment, eight amplitudes were randomly chosen.

A.5 Whisker stimulation

Sensory stimulation (S-Stim) was applied through computer controlled whisker de-

flections. Whiskers were trimmed at approximately 12mm from the face, and were

inserted into a glass pipette fixed to the end of a calibrated multi-layered piezoelec-

tric bimorph bending actuator (range of motion, 1 mm; bandwidth, 200 Hz; Physik
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Instrumente (PI), Auburn, MA) positioned 10 mm from the vibrissa pad. Vibrissae

were always deflected in the rostral-caudal plane. Punctate deflections consisted of

exponential rising and falling phases (99% rise time, 5 ms; 99% fall time, 5 ms) and

angular deflection velocities of 75, 150, 225, 300, 450, 600, 900, and 1200 deg/s were

used as mechanical probe stimuli (S-Stim).

A.6 Histology

Methods were adapted from Wong-Riely (1979)[205], with modifications adapted from

Silverman and Tootell (1987) [172]. Briefly, the cortex was flattened to 1mm and fixed

in 4% paraformaldehyde for 12 hours. Tangential sections of 70um were washed for

10 minutes in 10% sucrose in 0.1M phosphate buffer, 10 minutes in 10% sucrose in

0.05M Tris with 275mg/L cobalt chloride, then 3 times in PBS before being incubated

at 37 for 5 hours in the staining solution (0.5g/L DAB, 50g/L sucrose and 75mg/L

cytochrome c in 0.1M PB).

A.7 Barrel mapping

The VSD data collected in response to whisker stimulation was functionally regis-

tered to the histological map of the barrel cortex [194]. The contours of the barrel

cortex columns, shown in Figure A.1(c), were outlined using the Neurolucida software

(MBF Bioscience, Williston, VT) and imported into Matlab. The cortical columns

were determined in the VSD data by deflecting a single whisker using a piezoelectric

actuator and recording the cortical response. An example of the spatiotemporal VSD

response to a single whisker deflection is shown in Figure A.1(b). The initial frame

of cortical activation, which has previously been shown to be restricted to a single

cortical column [152], was captured for individual deflection of 4-6 different whiskers

during each experiment. An example of the VSD response to the deflection of four

different whiskers is overlaid in Figure A.1(d). A least-squares algorithm was used

to map the histologically identified anatomical barrel cortex map to the functional
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barrel cortex map measured through the VSD imaging. The histologically identified

barrel map was registered with the functional column mapping from VSD by solving

the following linear inverse problem [127]:



u1

u2
...

un

v1

v2
...

vn



=



x1 y1 1 0

x2 y2 1 0

...
... 1 0

xn yn 1 0

y1 −x1 0 1

y2 −x2 0 1

...
... 0 1

yn −xn 0 1



·



A cos θ

A sin θ

tx

ty


(31)

where the set of ui and vi are the coordinates of the center of mass of VSD activation

following each whisker deflection, xi and yi are the coordinates of the centroid of each

barrel column in the histology frame of reference, and A, θ, tx, and ty represent the

scale, rotation, and translation, respectively, to register the two coordinate axes.

If histology was not available for a given experimental day, the histological map

from other experimental sessions that produced the best fit was used. We have found

that histologically identified anatomical barrel cortex maps were consistent across

animals in terms of structure, and there was no qualitative difference in the results

when histological maps were interchanged across experiments.
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APPENDIX B

ANATOMICALLY BASED BAYESIAN DECODING OF

THE CORTICAL RESPONSE TO INTRACORTICAL

MICROSTIMULATION

B.1 Introduction

Sensory prostheses aim to restore function when it has been damaged due to trauma

or disease by delivering surrogate sensory signals through patterns of electrical micros-

timulation. Implementations of sensory prostheses in the peripheral nervous system,

such as the cochlear implant and retinal prosthesis, have demonstrated remarkable

success [87, 202]. Meanwhile, attempts to deliver sensory information directly to the

brain have proved more challenging. In order to leverage the success of peripheral

sensory prostheses, a unified framework for evaluating stimulus encoding models and

the resulting percepts delivered to the brain is needed.

Microstimulation has long been known to modulate behavior [166], and recent

work has even demonstrated the feasibility of closed loop sensorimotor prostheses in

the awake animal [144]. Yet, current behavioral paradigms are limited to a few

patterns of stimuli, prompting questions on the generalizability of the patterned

stimulation and ultimately leading to inefficient evaluation of encoding model per-

formance. Further, it remains unclear whether the surrogate sensory signals need

to exactly mimic naturally occurring sensory evoked activity, or if merely presenting

discriminable stimulus patterns is sufficient. In either case, the ability to decode the

surrogate sensory signals generated by patterned microstimulation is needed in order

to establish performance metrics for the design of stimulation encoding models.

Here we use voltage sensitive dye imaging (VSDI) to record the spatiotemporal
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cortical activity in response to intracortical microstimulation (ICMS) as an experi-

mental paradigm upon which an anatomically based Bayesian decoder is constructed.

The decoder performance is evaluated as a function of stimulus intensity for stim-

ulation across multiple electrodes in cortex. The results presented here form the

beginnings of an anatomically based Bayesian decoding framework for evaluating the

performance of stimulation encoding models designed to deliver surrogate sensory

signals through spatiotemporal patterns of microstimulation.

B.2 Methods

B.2.1 Experimental Paradigm

All procedures were approved by the Georgia Institute of Technology Institutional

Animal Care and Use Committee in accordance with NIH guidelines. Female sprague-

dawley rats (250-300g) were initially anesthetized with 4% isoflurane before intraperi-

toneal injection of sodium pentobarbital (50mg/kg weight) for long term anesthesia.

Animals were mounted in a stereotactic device and a craniotomy was performed

over the left parietal cortex (coordinates: 1-4mm posterior to bregma, 4-7mm lateral

to midline) to expose the barrel representation of the primary somatosensory cortex.

A diagram of the in vivo experimental preparation is shown in Fig. B.1A.

B.2.2 Voltage Sensitive Dye Imaging

Voltage sensitive dye imaging was used to monitor cortical activation. The detailed

methods are described elsewhere [195]. Briefly, the cortex was stained with dye

RH1691 (1mg/mL; Optical Imaging). A 1.0x magnification lens was used in con-

junction with a 0.63x condenser lens to provide 1.6x magnification (48 pixels/mm) to

image the cortical surface. The VSD data were acquired at five millisecond interframe

intervals beginning 200 milliseconds preceding stimulus presentation and processed

offline in Matlab (Mathworks Inc, Natick, MA).

The VSD data was functionally registered to the histological map of the barrel
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Figure B.1: Voltage sensitive dye imaging of intracortical microstimulation. (a) Ex-
perimental setup. (b) Registration of anatomical map with cortical response evoked
by deflection of individual whiskers. (c) Spatiotemporal cortical response to intracor-
tical microstimulation across four electrodes. (d) The response amplitude in cortex
increases monotically as a function of the current intensity of the stimulus. (e) Over-
lay of the onset frame of activation (10ms) for the four electrodes. Error bars in (b)
and (e) are 500µm.

cortex in order to discretize the spatiotemporal cortical signal with regard to well

defined cortical columns according to methods described previously [195]. An example

of the registration of the anatomical map is shown in Fig. B.1(b). Following the

functional image registration, the cortical response is discretized, yi, where each signal

corresponds to the ith functional cortical column. In so doing, the VSD signal is

averaged spatially within the contour of the cortical column.

B.2.3 Intracortical Microstimulation

A custom microelectrode array, comprised of four glass coated tungsten microelec-

trodes (impedance = 0.5-1 MΩ), was advanced to a depth of 750µm in vibrissa region

of the primary somatosensory cortex at a 45 degree angle to the cortical surface us-

ing a precision microdrive (Knopf Instruments, Tujunga, CA). The principal vibrissa

for each electrode was determined by manually deflecting individual whiskers and

observing the resulting multi-unit activity.

The electrode was used to deliver microstimulation to the surrounding tissue. In-

dividual electrical stimuli were charge-balanced, cathodal-first, biphasic waveforms
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of 200 microsecond duration per phase. The amplitude of the electrical stimuli were

varied systematically between 5-80µA for each electrode and all stimuli were inter-

leaved.

B.2.4 Decoding

We perform Bayesian decoding on the cortical response to ICMS. The functional

architecture of the cortex is used as the basis for decoding according to the following

equation:

y = Ax+ n for n ∼ N (0,Σ) (32)

where x, y, and n are Nx1 vectors, and A is an NxN matrix, with N equal to the

number of cortical columns within the anatomical registration to the VSDI data.

This formulation removed the aspect of time to only deal with single frames of VSDI

data, and reduced the two-dimensional anatomy to a vector of cortical columns. This

decoding framework modeled the stimulus, x, as a point source such that xi = 1

and xj = 0 for all i 6= j and i indicating the cortical column that was stimulated.

The matrix A defines the mapping of the discrete stimulus, x, to the spatial VSDI

data, y, where each row of A is a translated version of a point spread function.

The point spread function is modeled as a two dimensional Gaussian function fit to

whisker evoked VSDI activity. The noise, n, is spatially correlated and modeled from

the covariance across the cortical columns in the pre-stimulus VSDI activity. The

Bayesian decoding is performed with a flat prior, such that the maximum likelihood

estimate (MLE) and the maximum a posteriori (MAP) are identical. For each single

trial of VSDI data, the MLE, x̂MLE, was calculated by maximizing the log-likelihood

function:

x̂MLE = arg max
x

lnL(y|x) (33)
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where

lnL(y|x) = (y −Ax)TΣ−1(y −Ax) (34)

The maximum likelihood estimate for each trial, x̂MLE, is determined to be cor-

rect if it matches the electrophysiologically identified cortical column location of the

electrode stimulated on that trial. Because the MLE was chosen from a discrete set,

the decoding framework specifically performed a classification problem.

B.3 Results

B.3.1 ICMS activates localized regions in cortex

A custom 4-electrode array was inserted into the vibrissa portion of the primary

somatosensory cortex of the rodent with VSDI used to measure the cortical activity,

as illustrated by the diagram in Fig. B.1(a). First, individual whiskers were deflected,

and the resulting cortical responses were used to functionally register an anatomical

map of the cortical columns to the VSDI data. An overlay of the response to the

deflections of four different whiskers, along with the registered anatomical map, is

shown in Fig. B.1(b).

The registration was then used to interpret the cortical response to ICMS. Single

biphasic stimuli of varying current intensity were delivered on individual electrodes

inserted into putative layer 4 of cortex. Figure B.1(c) shows the spatiotemporal

evolution of the cortical response to stimulation on each of the four electrodes in the

array. The responses were initially localized to a single cortical column, but quickly

grew in amplitude and spread spatially. The response amplitude in cortex increased

monotically as a function of the current intensity of the stimulus, as illustrated by

Fig. B.1(d). Gaussian fits to the initial frame of activation (10ms) for stimulation of

each electrode are overlayed in Fig. B.1(e).
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B.3.2 Anatomically based Bayesian decoder accurately estimates stimu-
lus location

A Bayesian decoding framework was used to estimate the location of the stimulus on

a single trial basis. The decoding framework is described in detail in the methods.

Briefly, a point spread function was fit from whisker evoked activity and used to

formulate A, which describes the blurred VSDI activation, y, given the activation of

a single cortical column in x. Within this anatomically based framework, the goal of

the decoder was to infer the stimulus location given the blurred, noisy VSDI data.

The set of possible stimulus locations available to the decoder corresponded to the

number of cortical columns within the VSDI data, and an additional possibility of

no stimulus. For each single trial of VSDI, the MLE was evaluated and the decoded

stimulus location was determined to be correct if it matched the electrophysiologically

identified location of the electrode.

The performance is summarized in Fig. B.2. As the stimulus intensity was in-

creased, the performance of the decoder improved in a systematic way, as in Fig. B.2(a).

For a weak stimulus (5µA), the response in cortex was non-existent, leading the de-

coder to estimate that no stimulus was delivered (not shown). For a slightly stronger

stimulus (15µA), the majority of the trials were still classified as “no stimulus”, but

a few trials were identified as the correct cortical column (D2, shown in red). This

is shown for a single example in the left portion of Fig. B.2(c), where the majority

of the trials were classified as “no stimulus” given by the extra square outside of the

anatomical map. For a strong stimulus (40µA), the response in cortex was robust,

leading to each trial being detected. The majority of the trials were classified cor-

rectly, while the mistakes were attributed to nearby cortical columns, as in the right

portion of Fig. B.2(c).

The decoding peformance for each individual electrode (N=8) across all animals

is presented in Fig. B.2(b) as the thin gray lines. The median across all electrodes is
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Figure B.2: Decoding of stimulus location. (a) Typical example of decoding per-
formance as a function of stimulus intensity. (b) Summary of decoding performance.
Each individual electrode across all animals is shown in gray, with the median per-
formance in black. (c) Pictoral histogram of single trial estimates for the example in
panel A. The shading of the cortical columns indicates the number of trials for which
it was selected as the MLE, where the cortical column in red was the stimulated col-
umn. Weak currents are un-detected the majority of trials (left), while strong currents
are correctly estimated with few errors in neighboring cortical columns (right).

given by the thick black line. On average, the 50% decoding performance occurred

at 21µA, while the maximum performance was 84%.

B.3.3 ICMS cortical activation distinct from whisker evoked activity

The decoder was used in the previous section to decode the stimulus location within

the context of the anatomical map of the cortical columns. This analysis demon-

strated that relevant sensory information was delivered to the cortex through the

multi-electrode ICMS. Here we used the same decoding framework to quantify the

relative similarity of the neural response to whisker stimuli and ICMS. In this case,

the goal of the decoder was to classify the VSDI activation as having been caused

by a whisker stimulus, ICMS, or no stimulus. In this case, A from (32) was a Nx2

matrix, where the two rows corresponded to the decoding filter for a whisker stimulus

and ICMS. The whisker stimulus decoding filter was the same as that used in the pre-

vious section for the cortical column where the electrode was positioned (left portion
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Figure B.3: ICMS produces distinct activation compared to whisker inputs. (a) De-
coding filters calculated for whisker stimuli (left) and ICMS (right). (b) Performance
of the decoder in determining if the neural response came from a whisker stimulus or
ICMS. (c) ICMS generates more spatial spread in the cortical response than whisker
stimuli, underlying the high performance of the decoder in separating whisker stimuli
and ICMS.

of Fig. B.3(a)). To generate the ICMS decoding filter, 200 trials of VSDI data were

collected at a single current intensity on a single electrode. Half of the electrical stim-

ulation data was used to fit a decoding filter (right portion of Fig. B.3(a)), while the

other half was used to test the decoder. The whisker and ICMS decoding filters were

very similar, suggesting that whisker stimuli and ICMS might be indistinguishable.

Maximum likelihood estimation was performed on the remaining 100 trials of

VSDI data collected from ICMS. The average results across the two animals are

shown in Fig. B.3(b). The decoder was able to correctly identify the ICMS on 70% of

the trials. Importantly, of the two types of errors (i.e. classifying as whisker stimulus

or as no stimulus), the “no stimulus” condition occurred most often. This indicates

that while the anatomically based Bayesian decoder was effective at extracting be-

haviorally relevant sensory signals from the ICMS, the neural activation caused by

ICMS is distinctly different from whisker evoked activity. This can be seen in the

slight differences between the decoding filters for the whisker stimulus and ICMS in
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Fig. B.3(a). However, it is more apparent when returning to the raw data and calcu-

lating the width of the Gaussian fit to the spatial spread of activation. Figure B.3(c)

shows that the width of the spatial spread of the ICMS response in cortex is signfi-

cantly greater than that of whisker evoked activity (p=0.002, Student’s T-test).

B.4 Conclusion

Voltage sensitive dye imaging was used as an experimental paradigm for analyzing

the cortical response to ICMS and developing a decoding framework for quantifying

the information delivered through artificial stimuli. The cortical response to ICMS

was initially constrained to the size of a single cortical column. However, quickly

the response spread spatially across cortex. This is consistent with previous ICMS

studies that report a large spread of activation, both in extracellular recordings [29]

and calcium imaging [83].

A Bayesian decoder was built from the underlying anatomical arrangement of the

functional cortical columns in the rodent barrel cortex in order to classify the stimulus

location generated by ICMS. The decoder accurately estimated the stimulus location

of the ICMS. Importantly, one of the available classes was the absence of a stimu-

lus. Therefore, the decoder was required to both detect a stimulus and discriminate

between competing stimuli. In our results, the threshold for the decoder detecting

the stimulus was consistent with previous behavioral work in rodents and primates

[136, 30]. Also, when the stimulus was detected (i.e. not estimated as “no stimulus”),

the correct stimulus location was classified with few errors, which is again similar to

previous work [47].

The performance of the anatomically based decoder indicates that behaviorally

relevant surrogate sensory signals were delivered by the ICMS to the cortex. However,

when the decoder was modified in order to classify the neural response as having come

from a whisker stimulus or ICMS, it correctly distinguished between the stimuli with
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high probability. This suggests that the ICMS does not produce the same sensory

perception as that of whisker stimuli. This was further evident from the increased

spatial spread of activation in cortex due to ICMS as compared to whisker stimuli.

This result is consistent with previous studies that have reported significant spatial

spread caused by ICMS [29], and may be due to the stimulation of fibers of passage

[83, 195].

The decoder in this study only operated on single frames, restricting the decoding

problem to location identification. An immediate extension of this work is to include

time into the decoding problem, allowing for the decoding of neural activity evoked by

spatiotemporal patterns of stimulation. Whereas a flat prior was used in this study,

the extension to decoding patterns of activity would utilize the Bayesian framework

to define the ethological relevance of activity patterns in the brain. The framework

provided here, paired with the experimental approach, serves as an initial step in the

development of an anatomically based spatiotemporal decoder of neural activity for

the design and evaluation of stimulation encoding models for sensorimotor prostheses.
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